Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene, preparation tests

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

Addresses of suppliers of catalyst pastes included in Table B.l are presented below. Other companies (e.g. Johnson-Matthey) may also supply similar products. The suitability of these products for preparing catalyst films for electrochemical promotion studies should be tested on the basis of the requirements already mentioned. A useful approach before proceeding with the study of new systems is to try to reproduce results of electrochemical promotion studies in model systems, such as ethylene oxidation on Pt, which has been thoroughly studied. It has to be pointed out that in general suppliers do not provide calcination procedures or the provided calcination procedures aim to the production of very dense and non-porous films not necessarily suitable for electrochemical promotion studies. [Pg.546]

The goal of this work was to prepare and characterize PtRu/MgO catalysts from cluster A which contained Pt-Ru bonds and compare with that prepared from a mixed solution of Pt(acac)2 and Ru(acac)3. The characterization methods included IR and EXAFS spectroscopy. Ethylene hydrogenation was used to test the catalytic activity of both PtRu/MgO catalysts. [Pg.209]

How can you make a polyester and a polyamide Objectives Prepare a polyester from phthalic anhydride and ethylene glycol. Prepare a polyamide from adipoyl chloride and hexamethylenediamine. phthalic anhydride (2.0 g) sodium acetate (0.1 g) ethylene glycol (1 mL) 5% adipoyl chloride in cyclohexane (25 mL) 50% aqueous ethanol (10 mL) 5% aqueous solution of hexamethylenediamine (25 mL) 20% sodium hydroxide (NaOH) (1 mL) scissors copper wire test tube test-tube rack 10-mL graduated cylinder 50-mL graduated cylinder 150-mL beakers (2) ring stand clamp Bunsen burner striker or matches balance weighing papers (2)... [Pg.182]

The above example outlines a general problem in immobilized molecular catalysts - multiple types of sites are often produced. To this end, we are developing techniques to prepare well-defined immobilized organometallic catalysts on silica supports with isolated catalytic sites (7). Our new strategy is demonstrated by creation of isolated titanium complexes on a mesoporous silica support. These new materials are characterized in detail and their catalytic properties in test reactions (polymerization of ethylene) indicate improved catalytic performance over supported catalysts prepared via conventional means (8). The generality of this catalyst design approach is discussed and additional immobilized metal complex catalysts are considered. [Pg.268]

The poly(ethylene terephthalate-co-esters) were prepared as previously described (9) after knitting, scouring, and deknitting, the yarns were examined, tested and exposed in a standard fashion (9) to 3000 A radiation. [Pg.240]

Gaudette and Coatney [115] reported that primaquine phosphate was unstable when subjected to dry heat of 100 °C in the presence of sodium chloride for 24 h, when boiled in water for 24 h and when heated for 24 h at 100 or 200 °C in melted hydrogenated vegetable oil. These findings exclude the use of primaquine phosphate as a salt additive in cooking. Primaquine phosphate was isolated from the test preparations at alkaline pH by extraction into ethylene chloride, after which primaquine phosphate was returned to an aqueous phase by shaking with 0.1 N sulfuric acid the concentration of primaquine phosphate was then determined spectrophotometrically. The ultraviolet absorption curve of primaquine phosphate has maxima at 224, 266, 282, and 300 nm, and minima at 216, 250, 276, and 310 nm. A solution containing 10 yl/mL has an optical density of 0.375 at 282 nm optical densities were proportional to concentrations. [Pg.196]

Spencer and Brewer [144] have reviewed methods for the determination of nitrite in seawater. Workers at WRc, UK [ 145] have described an automated procedure for the determination of oxidised nitrogen and nitrite in estuarine waters. The procedure determines nitrite by reaction with N-1 naphthyl-ethylene diamine hydrochloride under acidic conditions to form an azo dye which is measured spectrophotometrically. The reliability and precision of the procedure were tested and found to be satisfactory for routine analyses, provided that standards are prepared using water of an appropriate salinity. Samples taken at the mouth of an estuary require standards prepared in synthetic seawater, while samples taken at the tidal limit of the estuary require standards prepared using deionised water. At sampling points between these two extremes there will be an error of up to 10% unless the salinity of the standards is adjusted accordingly. In a modification of the method, nitrate is reduced to nitrite in a micro cadmium/copper reduction column and total nitrite estimated. The nitrate content is then obtained by difference. [Pg.90]

In this work on compounds containing the C—F link, it was obviously desirable to prepare 2-fluoroethanol, both for toxicity tests on the compound itself, and as a starting material for the production of other fluorine compounds. Swarts1 was unable to obtain 2-fluoroethanol by the action of silver fluoride or mercuric fluoride on either ethylene chlorohydrin or ethylene bromohydrin. He obtained acetaldehyde in each case. He ultimately obtained fluoroethanol in very poor yield by the indirect method of hydrolysing fluoroacetin (from bromoacetin and mercuric fluoride) for 80 hr. with dilute mineral acid. [Pg.135]

Although Fields already mentioned the possible preparation of monolithic silica-based CEC columns, the lack of experimental data leads to the assumption that this option has not been tested [111]. In fact, it was Tanaka et al. who demonstrated the preparation of monolithic capillary columns using a sol-gel transition within an open capillary tube [99,112]. The trick was in the starting mixture that in addition to tetramethoxysilane and acetic acid also includes poly(ethylene oxide). The gel formed at room temperature was carefully washed with a variety of solvents and heated to 330 °C. The surface was then modified with octadecyl-trichlorosilane or octadecyldimethyl-A N-dimethylaminosilane to attach the hy-... [Pg.29]

ISO 4613-1 1993 Plastics - Ethylene/vinyl acetate (E/VAC) moulding and extrusion materials - Part 1 Designation and specification ISO 4613-2 1995 Plastics - Ethylene/vinyl acetate (E/VAC) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties ISO 8985 1998 Plastics - Ethylene/vinyl acetate copolymer (EVAC) thermoplastics -Determination of vinyl acetate content... [Pg.289]

ISO 14663-2 1999 Plastics - Ethylene/vinyl alcohol (EVOH) copolymer moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties... [Pg.298]

Afterwards, a bulk monolith was prepared in situ by copolymerization of vinylbenzyl chloride and ethylene glycol dimethacrylate. The benzyl chloride functionalities were then hydrolyzed to benzyl alcohol groups and the monolith used in separating a peptide test mixture. [Pg.458]

Poly(ethylene terephthalate)s modified with increasing amounts of 5-sodiosulfo-isophthalic acid were prepared and char formation analyzed by thermogravimetric analysis at 600°C. Samples were heated at a rate of 20°C/min under a nitrogen flow of 50 ml/min. Char testing results are provided in Table 1. [Pg.230]

Thin films of polyethylene, poly(ethylene-co-5-norbomen-2-yl acetate), and poly-(cthylene-co-5-norbomen-2-ol) were prepared on glass slides and contact angle measurements of water droplets determined. Testing results are provided in Table 2. [Pg.311]

Takeuchi et al. prepared films by the evaporation of copper and nickel metals or their alloys on a substrate cooled by liquid oxygen. Prior to use, the film was treated in vacuum at 30 or 250°C. The catalytic activity was tested by the hydrogenation reaction of ethylene. Their result is illustrated in Fig. 8. Essentially similar results have been reported by Volter and Alsdorf... [Pg.91]


See other pages where Ethylene, preparation tests is mentioned: [Pg.61]    [Pg.421]    [Pg.341]    [Pg.406]    [Pg.308]    [Pg.203]    [Pg.269]    [Pg.225]    [Pg.338]    [Pg.107]    [Pg.109]    [Pg.110]    [Pg.113]    [Pg.114]    [Pg.147]    [Pg.184]    [Pg.464]    [Pg.495]    [Pg.91]    [Pg.213]    [Pg.32]    [Pg.200]    [Pg.109]    [Pg.158]    [Pg.417]    [Pg.248]    [Pg.20]    [Pg.1360]    [Pg.308]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Ethylene, preparation

Test preparation

© 2024 chempedia.info