Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl formate, from oxidation

Complex (2) also catalyzes the reaction of propylene oxide with C02 (equation 147).S82 The lactone (122) was the major product. Complex (6) catalyzes the formation of ethyl formate from ethanol, C02 and H2.583... [Pg.294]

Sodamide should never be stored in a stoppered bottle from which samples are to be removed intermittently, since dangerous mixtures may result when the substance is exposed for 2-3 days to even limited amounts of air at the ordinary temperature. As a safe practice, sodamide should be used immediately after preparation, and should not be kept longer than 12-24 hours unless it be under an inert solvent. Even small amounts of unused sodamide should be removed from the apparatus in which it was made by washing with methyl or ethyl alcohol. In all cases where a yellowish or brownish colour develops, due to the formation of oxidation... [Pg.196]

The mechanism of H02 formation from peroxyl radicals of primary and secondary amines is clear (see the kinetic scheme). The problem of H02 formation in oxidized tertiary amines is not yet solved. The analysis of peroxides formed during amine oxidation using catalase, Ti(TV) and by water extraction gave controversial results [17], The formed hydroperoxide appeared to be labile and is hydrolyzed with H202 formation. The analysis of hydroperoxides formed in co-oxidation of cumene and 2-propaneamine, 7V-bis(ethyl methyl) showed the formation of two peroxides, namely H202 and (Me2CH)2NC(OOH)Me2 [16]. There is no doubt that the two peroxyl radicals are acting H02 and a-aminoalkylperoxyl. The difficulty is to find experimentally the real proportion between them in oxidized amine and to clarify the way of hydroperoxyl radical formation. [Pg.359]

Rats exposed to a fteptone-containing atmosphere excreted a variety of metabolites resulting from oxidative pathways [176]. The major metabolites were isomeric mono-alcohols and ketones, but small amounts of 2-ethyl-5-methyl-2,3-dihydrofuran (11.171, R = Et, R = Me, Fig. 11.22,a) and 5-ethyl-2-methyl-2,3-dihydrofuran (11.171, R = Me, R = Et) were also detected. These metabolites are believed to arise from 6-hydroxyheptan-3-one (11.170, R = Et, R = Me) and 5-hydroxyheptan-2-one (11.170, R = Me, R = Et). The postulated mechanism of formation of 2,3-dihydrofurans involves their equilibrium with the corresponding linear y-hydroxy ketones, as shown in Fig. 11.22,a. Such a reaction has been documented for linear y-hydroxy aldehydes [177],... [Pg.747]

Diacetyl (DA) is used as a flavour enhancer in the food industry and is currently manufactured from methyl ethyl ketone (MEK) in homogeneous systems via an oxime intermediate (ref.1). In principle, DA can also be manufactured by the selective oxidation of MEK and several reports have appeared in the literature which apply heterogeneous catalysts to this task (refs. 2-4). A number of reports have specified the importance of basic or weakly acidic sites on the catalyst surface for a selectively catalysed reaction and high selectivities to DA at moderate conversions of MEK have been reported for catalysts based on C03O4 as a pure oxide and with basic oxides added conversely scission reactions have been associated with acidic oxide additives (refs. 2-4). Other approaches to this problem have included the application of vanadium phosphorus oxide (VPO) catalysts. Ai (ref. 5) has shown that these catalysts also catalyse the selective oxidation of MEK to DA. Indeed this catalyst system, used commercially for the selective oxidation of n-butane to maleic anhydride (ref.6), possesses many of the desired functionalities for DA formation from MEK, namely the ability to selectively activate methylene C-H bonds without excessive C-C bond scission. [Pg.437]

Directly supported clusters of type Os3H(CO)10(O—metal oxide) break down at quite low temperatures to give species which have a high selectivity to methane from CO and H2 (381,400). Similar behavior has been reported for Os3(CO)12 itself (401), but it is difficult to rule out metal as the catalyst. Os3(CO)12 also leads to methanol, methyl and ethyl formate, and acetone by reaction with CO and H 2 (190° C, 180 atm) in glyme solvents (402). The water-gas-shift reaction is catalyzed by Os3(CO)12, using KOH or even sodium sulfide in methanol as the base (403), although ruthenium catalysts are better (404). [Pg.64]

A two-electron oxidation of N-acetyltyrosine ethyl ester with mushroom tyrosinase, or with periodate, afforded the N-acetyIdopa ester 142, together with the (Z)-enamide 145 and the 6-acetoxydopa amide 146 (Fig. 40) (284). It is assumed that 145 originates from dopaquinone 143 via 144 by tautomerization. Michael addition of acetate to quinone 143 is believed to be the origin of 146. The formation of quinone methide 144 from dopa ester 142 by tyrosinase is reminiscent of the formation of iminochromes and quinone methides catalyzed by this enzyme in their formation from a-methyl dopa ester (285), and such reactions may well occur in mammalian systems. [Pg.169]

Gramicidin A, however, is attacked by JV -bromoacetamide (NBA) and N-bromosuccinimide (NBS) (Gross and Witkop, unpublished observation). In 50 % aqueous ethyl alcohol at room temperature 5 % of the peptide bonds (20% of the tryptophyl peptide bonds) are cleaved with NBS. Methyl alcohol must be avoided because it opens the spirodioxindole lactone from oxidized tryptophan to the ester even at room temperature. The cleavage mixture separates on electrophoresis (pH = 2.5, sodium-formate buffer) into four ninhydrin-positive components of which the fastest migrating one was identified as ethanolamine. Dinitrophenylation showed leucine and alanine to be additional NHs-terminals of the released fragments. [Pg.291]

Arsenite is known to have some effect on oxidative phosphorylation. However, as can be seen [Figure 5c] the use of an uncoupler of oxidative phosphorylation (2,l(-dinitrophenol) did not affect accumulation of ethyl acetate. From this it would appear that the main inhibitory effect of arsenite on ethyl acetate accumulation by C. utllls is at the level of acetyl-CoA formation. Thus acetyl-CoA is implicated as a key precursor for synthesis of ethyl acetate supporting a model presented earlier [Figure it]. [Pg.260]


See other pages where Ethyl formate, from oxidation is mentioned: [Pg.508]    [Pg.440]    [Pg.173]    [Pg.10]    [Pg.8]    [Pg.122]    [Pg.192]    [Pg.95]    [Pg.382]    [Pg.355]    [Pg.6]    [Pg.68]    [Pg.698]    [Pg.744]    [Pg.532]    [Pg.238]    [Pg.532]    [Pg.221]    [Pg.584]    [Pg.154]    [Pg.584]    [Pg.16]    [Pg.216]    [Pg.378]    [Pg.128]    [Pg.52]    [Pg.446]    [Pg.404]    [Pg.24]    [Pg.382]    [Pg.60]    [Pg.364]   
See also in sourсe #XX -- [ Pg.2 , Pg.470 ]

See also in sourсe #XX -- [ Pg.2 , Pg.169 ]




SEARCH



Ethyl formate

Ethyl formation

Ethyl from oxidation

Ethyl oxidation

Ethyl oxide

© 2024 chempedia.info