Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers, silyl enol reagents

OL-Methylenecyclohutanones. The reagent reacts regioselectively with activated alkenes (vinyl ethers, silyl enol ethers) to give cyclobutanones. These products undergo ring expansion with diazomethane to cyclopentanones. Both products undergo desilylative elimination in the presence of fluoride ion to form a-methylene ketones. [Pg.127]

Silyl enol ethers. Silyl enol ethers are obtained in isolated yields of 50-90% on irradiation (low-pressure mercury lamp) of an ether solution of 1 and a carbonyl compound. The actual reagent is dimethylsilylene, (CHalaSi , which is generated by photolysis of 1. ... [Pg.114]

The in situ cyanosilylation of p-an1saldehyde is only one example of the reaction which can be applied to aldehydes and ketones in general. - The simplicity of this one-pot procedure coupled with the use of inexpensive reagents are important advantages over previous methods. The silylated cyanohydrins shown in the Table were prepared under conditions similar to those described here. Enolizable ketones and aldehydes have a tendency to produce silyl enol ethers as by-products in addition to the desired cyanohydrins. The... [Pg.199]

Systems usually fluonnated by electropositive fluorine reagents include acti-vated alkenes (enol ethers, enol acetates, silyl enol ethers, and enamines), activated aromatic systems, certain slightly activated carbon-hydrogen bonds, and selected organometallics. [Pg.133]

FITS reagents), has undergone considerable development recently [141,142,143, 144, 14S. These compounds, available fromperfluoroalkyhodides (equation 76), are very effective electrophilicperfluoroalkylating agents They react with carban-lons, aromatic compounds, alkenes, alkynes, silyl enol ethers, and other nucleophiles under mild conditions to introduce the perfluoroalkyl moiety mto organic substrates (equation 77) (see the section on alkylation, page 446). [Pg.969]

Nitradon of the potassium enolates of cycloalkanones with pentyl n silyl enol ethers with nitroniiim tetraflnoroborate " provides a method for the preparadon of cydic ct-nitro ketones. Tnflnoroacetyl nitrate generated from tnflnoroacedc anhydnde and ammonium nitrate is a mild and effecdve nitradug reagent for enol acetates fEq. 2.411. ... [Pg.16]

Cyclic and acyclic silyl enol ethers can be nitrated with tetranitromethane to give ct-nitro ketones in 64-96% yield fEqs. 2.42 and 2.43. " The mechanism involves the electron transfer from the silyl enol ether to tetranitromethane. A fast homolydc conphng of the resultant cadon radical of silyl enol ether with NO leads tn ct-nitro ketones. Tetranitromethane is a neutral reagent it is commercially available or readdy prepared. " ... [Pg.16]

Acylsilanes are most useful synthetic intermediates (1), providing, inter alia, controlled routes to silyl enol ethers. They are relatively unreactive towards nucleophilic reagents for both steric and electronic reasons. [Pg.135]

The enol acetates, in turn, can be prepared by treatment of the parent ketone with an appropriate reagent. Such treatment generally gives a mixture of the two enol acetates in which one or the other predominates, depending on the reagent. The mixtures are easily separable. An alternate procedure involves conversion of a silyl enol ether (see 12-22) or a dialkylboron enol ether (an enol borinate, see p. 560) to the corresponding enolate ion. If the less hindered enolate ion is desired (e.g., 126), it can be prepared directly from the ketone by treatment with lithium diisopropylamide in THE or 1,2-dimethoxyethane at —78°C. ... [Pg.554]

Vinylic lithium reagents (26) react with silyl peroxides to give high yields of silyl enol ethers with retention of configuration. Since the preparation of 26 from vinylic halides (12-37) also proceeds with retention, the overall procedure is a... [Pg.796]

Ketones and carboxylic esters can be a hydroxylated by treatment of their enolate forms (prepared by adding the ketone or ester to LDA) with a molybdenum peroxide reagent (MoOs-pyridine-HMPA) in THF-hexane at -70°C. The enolate forms of amides and estersand the enamine derivatives of ketones can similarly be converted to their a hydroxy derivatives by reaction with molecular oxygen. The M0O5 method can also be applied to certain nitriles. Ketones have also been Qc hydroxylated by treating the corresponding silyl enol ethers with /n-chloroperoxy-... [Pg.915]

Scheme 2.12 shows some representative Mannich reactions. Entries 1 and 2 show the preparation of typical Mannich bases from a ketone, formaldehyde, and a dialkylamine following the classical procedure. Alternatively, formaldehyde equivalents may be used, such as l>is-(di methyl ami no)methane in Entry 3. On treatment with trifluoroacetic acid, this aminal generates the iminium trifluoroacetate as a reactive electrophile. lV,A-(Dimethyl)methylene ammonium iodide is commercially available and is known as Eschenmoser s salt.192 This compound is sufficiently electrophilic to react directly with silyl enol ethers in neutral solution.183 The reagent can be added to a solution of an enolate or enolate precursor, which permits the reaction to be carried out under nonacidic conditions. Entries 4 and 5 illustrate the preparation of Mannich bases using Eschenmoser s salt in reactions with preformed enolates. [Pg.140]

This reaction is extended to the intramolecular ring closure of the intermediate radical 224 with olefinic or trimethylsilylacetylenic side chains [121]. Cu(BF4)2 is also effective as an oxidant (Scheme 89) [122]. Conjugate addition of Grignard reagents to 2-eyclopenten-l-one followed by cyclopropanation of the resulting silyl enol ethers gives the substituted cyclopropyl silyl ethers, which are oxidized to 4-substituted-2-cyclohexen-l-ones according to the above-mentioned method [123]. (Scheme 88 and 89)... [Pg.144]

The reaction is applicable to acyclic and cyclic enol ethers and to various (3-dicarbonyl compounds, but fails with silyl enol ethers and simple 1,2-disubstituted alkenes. When applicable, this route to furans is useful because the yields and regioselectivity are consistently satisfactory. The paper includes a preparation of the reagent by reaction of Mn(NO,)3 with Ac20 at 100° to give Mn,0(0Ac)7 H0Ac in 60% yield. [Pg.198]

Various carbon nucleophiles, such as allylsilanes, allylstannanes, silyl enol ethers, ketene silyl acetals, organoaluminum compounds, and Grignard reagents were effective as carbon nucleophiles. [Pg.206]

A different approach towards titanium-mediated allene synthesis was used by Hayashi et al. [55], who recently reported rhodium-catalyzed enantioselective 1,6-addition reactions of aryltitanate reagents to 3-alkynyl-2-cycloalkenones 180 (Scheme 2.57). In the presence of chlorotrimethylsilane and (R)-segphos as chiral ligand, alle-nic silyl enol ethers 181 were obtained with good to excellent enantioselectivities and these can be converted further into allenic enol esters or triflates. In contrast to the corresponding copper-mediated 1,6-addition reactions (Section 2.2.2), these transformations probably proceed via alkenylrhodium species (formed by insertion of the C-C triple bond into a rhodium-aryl bond) and subsequent isomerization towards the thermodynamically more stable oxa-jt-allylrhodium intermediates [55],... [Pg.82]


See other pages where Ethers, silyl enol reagents is mentioned: [Pg.127]    [Pg.226]    [Pg.841]    [Pg.945]    [Pg.162]    [Pg.215]    [Pg.57]    [Pg.546]    [Pg.775]    [Pg.794]    [Pg.1027]    [Pg.1027]    [Pg.1512]    [Pg.320]    [Pg.331]    [Pg.686]    [Pg.1212]    [Pg.1215]    [Pg.8]    [Pg.98]    [Pg.216]    [Pg.67]    [Pg.156]    [Pg.204]   
See also in sourсe #XX -- [ Pg.739 ]




SEARCH



Enol ethers reagent

Enolates silylation

Silyl enol ethers

Silyl enol ethers organometallic reagents

Silyl enol ethers with aryl Grignard reagents

Silyl enolate

Silyl enolates

Silyl reagents

Silylation reagent

© 2024 chempedia.info