Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers from carbocations

Reaction of (284) with an aldehyde, ketone, or enol ether in the presence of acid results in an electrophilic substitution that produces a -ferrocenylalkyl carbocations that may be trapped by nucleophiles (azides, amines, thiols). This chemistry may be used to prepare enantiomerically pure ferrocene derivatives in a maimer that avoids resolution procedures (Scheme 86)." For example, the enol ether from (-)-menthone affords a kinetic carbocation (302) that may be trapped or allowed to rearrange to the more thermodynamically stable cation (303) and then trapped, thus offering a means of controlling the configuration of the stereocenter adjacent to the ferrocene unit. Use of an enantiomerically pure aldehyde derived from Q -pinene (304) affords a 1 1 carbocationic mixture that similarly isomerizes to a single cation. [Pg.2070]

Polymer Stereochemistry and Optical Activity.—Although stereoregular products from carbocation propagations are not common, there are some notable examples, perhaps the most important being the isotactic materials from alkyl vinyl ethers. Recently, novel catalysts based on phosphoryl and thionyl chlorides with vanadium pentoxide have been added to those initiator systems capable of producing stereospecific reactions. [Pg.250]

Elimination of Thiophenol from Thioacetals. Conversion of thioacetals to vinyl sulfides is accomplished under exceptionally mild conditions by treatment with (CuOTOa-CeHe (eq 45). The reaction involves an a-phenylthio carbocation intermediate. Three factors contribute to the effectiveness of this synthetic method the Lewis acidity of a copperfT) cation that is unencumbered by a strongly coordinated counter anion, the solubility of the copper(I) triflate-benzene complex, and the insolubility of CuSPh in the reaction mixture. An analogous elimination reaction provides an effective route to phenylthio enol ethers from ketones (eq 46). ... [Pg.164]

Indeed, cumyl carbocations are known to be effective initiators of IB polymerization, while the p-substituted benzyl cation is expected to react effectively with IB (p-methylstyrene and IB form a nearly ideal copolymerization system ). Severe disparity between the reactivities of the vinyl and cumyl ether groups of the inimer would result in either linear polymers or branched polymers with much lower MW than predicted for an in/mcr-mediated living polymerization. Styrene was subsequently blocked from the tert-chloride chain ends of high-MW DIB, activated by excess TiCU (Scheme 7.2). [Pg.202]

It was previously observed that with a catalytic amount of FeCls, benzylic alcohols were rapidly converted to dimeric ethers by eliminating water (Scheme 14). In the presence of an alkyne this ether is polarized by FeCls and generates an incipient benzylic carbocation. The nucleophilic attack of the alkyne moiety onto the resulting benzyl carbocation generated a stable alkenyl cation, which suffer the nucleophilic attack of water (generated in the process and/or from the hydrated... [Pg.11]

Silyl enol ethers and silyl ketene acetals also offer both enhanced reactivity and a favorable termination step. Electrophilic attack is followed by desilylation to give an a-substituted carbonyl compound. The carbocations can be generated from tertiary chlorides and a Lewis acid, such as TiCl4. This reaction provides a method for introducing tertiary alkyl groups a to a carbonyl, a transformation that cannot be achieved by base-catalyzed alkylation because of the strong tendency for tertiary halides to undergo elimination. [Pg.863]

Different rate-determining steps are observed for the acid-catalyzed hydration of vinyl ethers (alkene protonation, ks kp) and hydration of enamines (addition of solvent to an iminium ion intermediate, ks increasing stabilization of a-CH substituted carbocations by 71-electron donation from an adjacent electronegative atom results in a larger decrease in ks for nucleophile addition of solvent than in kp for deprotonation of the carbocation by solvent. [Pg.112]

The behavior of members of the bicyclo[2.2.1]heptene family is also different from that of other common 1,2-disubstituted alkenes.230 The parent bicy-clo[2.2.1]heptene gives bicyclo[2.2.1]heptane in only 3.5% yield when it is treated with Et3SiH/TFA. The major product is reported to be a 2-bicyclo[2.2.1]heptyl trifluoroacetate of unspecified configuration (Eq. 70).230 The carbocation intermediate is presumably the 2-norbornyl cation. Addition of small amounts of boron trifluoride etherate to the reaction mixture causes the yield of hydrocarbon product to rise to 22% after a reaction time of 24 hours at room temperature. Further... [Pg.36]

Alkenes are scavengers that are able to differentiate between carbenes (cycloaddition) and carbocations (electrophilic addition). The reactions of phenyl-carbene (117) with equimolar mixtures of methanol and alkenes afforded phenylcyclopropanes (120) and benzyl methyl ether (121) as the major products (Scheme 24).51 Electrophilic addition of the benzyl cation (118) to alkenes, leading to 122 and 123 by way of 119, was a minor route (ca. 6%). Isobutene and enol ethers gave similar results. The overall contribution of 118 must be more than 6% as (part of) the ether 121 also originates from 118. Alcohols and enol ethers react with diarylcarbenium ions at about the same rates (ca. 109 M-1 s-1), somewhat faster than alkenes (ca. 108 M-1 s-1).52 By extrapolation, diffusion-controlled rates and indiscriminate reactions are expected for the free (solvated) benzyl cation (118). In support of this notion, the product distributions in Scheme 24 only respond slightly to the nature of the n bond (alkene vs. enol ether). The formation of free benzyl cations from phenylcarbene and methanol is thus estimated to be in the range of 10-15%. However, the major route to the benzyl ether 121, whether by ion-pair collapse or by way of an ylide, cannot be identified. [Pg.15]

Allenylsilanes react with acetals to afford homopropargylic ethers (Table 9.37) [61]. These reactions are promoted by silyl and carbocation species. A variation of this conversion involves in situ formation of the acetal from an aldehyde and Me3SiOMe (Eq. 9.55). The success of this method indicates that conversion of the aldehyde to the acetal and its subsequent reaction with the silane must be faster than direct reaction of the aldehyde with the silane. [Pg.535]

Refluxing in acid protonates the end ether to give a nice stable carbocation. Loss of CO2 from this carbocation gives a new dienol ether. Acidic hydrolysis of this dienol ether gives the product enone in the usual fashion. [Pg.140]


See other pages where Ethers from carbocations is mentioned: [Pg.480]    [Pg.322]    [Pg.228]    [Pg.113]    [Pg.370]    [Pg.245]    [Pg.516]    [Pg.516]    [Pg.186]    [Pg.115]    [Pg.94]    [Pg.445]    [Pg.460]    [Pg.481]    [Pg.700]    [Pg.201]    [Pg.401]    [Pg.46]    [Pg.241]    [Pg.214]    [Pg.85]    [Pg.107]    [Pg.107]    [Pg.16]    [Pg.20]    [Pg.21]    [Pg.117]    [Pg.161]    [Pg.192]    [Pg.817]    [Pg.71]    [Pg.241]    [Pg.565]    [Pg.626]    [Pg.377]    [Pg.378]   
See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.107 ]




SEARCH



From ethers

© 2024 chempedia.info