Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers amino-, aliphatic

Synonyms Slloxanes and silicones, dimethyl, 3-hydroxypropyl methyl, ethers with polyethylene glycol mono [3-[bis (2-carbo) ethyl) amino] propyl) ether Definition Aliphatic amine derived from dimethicone copolyol Ionic Nature Cationic... [Pg.2083]

Herbert and Hay reported a bisphenolic monomer, 3,8-bis(4-hydroxyphenyl)-A-phenyl-1,2-naphthalimide (Table 6.1), as well as its corresponding polyf V-phenyl imido aryl ether sulfone) via transimidization reactions with hydrazine monohydrate, aliphatic amines, and an amino acid.193 These polysulfones with... [Pg.354]

They react with a wide range of aliphatic and aromatic aldehydes in the presence of catalytic amounts of tetrabutylammonium fluoride (TBAF) to give the trialkylsilyl ethers of P-nitro alcohols with high anti-selectivity (98%). The diastereoselective Henry reaction is summarized in Table 3.2. The products are reduced to P-amino alcohols using Raney Ni-H2 with retention of the configuration of P-nitro alcohols (Scheme 3.12). [Pg.52]

Several examples of Bi(OTf)3-catalyzed Mannich-type reactions with various silyl enol ethers are summarized in Table 12. Silyl enol ethers derived from aromatic and aliphatic ketones were reacted with an equimolar mixture of aldehyde and aniline (Scheme 10). The corresponding (3-amino ketones 27 were obtained in good yields (Table 12, entries 1M-) from aromatic-derived silyl enol ethers, except for the more hindered isobutyrophenone derivative. Silyl enol ethers derived from cyclopentanone or cyclohexanone afforded the (3-amino ketones in good yields (Table 12, entries 5 and 6). [Pg.90]

The lower members of the homologous series of 1. Alcohols 2. Aldehydes 3. Ketones 4. Acids 5. Esters 6. Phenols 7. Anhydrides 8. Amines 9. Nitriles 10. Polyhydroxy phenols 1. Polybasic acids and hydro-oxy acids. 2. Glycols, poly-hydric alcohols, polyhydroxy aldehydes and ketones (sugars) 3. Some amides, ammo acids, di-and polyamino compounds, amino alcohols 4. Sulphonic acids 5. Sulphinic acids 6. Salts 1. Acids 2. Phenols 3. Imides 4. Some primary and secondary nitro compounds oximes 5. Mercaptans and thiophenols 6. Sulphonic acids, sulphinic acids, sulphuric acids, and sul-phonamides 7. Some diketones and (3-keto esters 1. Primary amines 2. Secondary aliphatic and aryl-alkyl amines 3. Aliphatic and some aryl-alkyl tertiary amines 4. Hydrazines 1. Unsaturated hydrocarbons 2. Some poly-alkylated aromatic hydrocarbons 3. Alcohols 4. Aldehydes 5. Ketones 6. Esters 7. Anhydrides 8. Ethers and acetals 9. Lactones 10. Acyl halides 1. Saturated aliphatic hydrocarbons Cyclic paraffin hydrocarbons 3. Aromatic hydrocarbons 4. Halogen derivatives of 1, 2 and 3 5. Diaryl ethers 1. Nitro compounds (tertiary) 2. Amides and derivatives of aldehydes and ketones 3. Nitriles 4. Negatively substituted amines 5. Nitroso, azo, hy-drazo, and other intermediate reduction products of nitro com-pounds 6. Sulphones, sul-phonamides of secondary amines, sulphides, sulphates and other Sulphur compounds... [Pg.1052]

Phenols attached to insoluble supports can be etherified either by treatment with alkyl halides and a base (Williamson ether synthesis) or by treatment with primary or secondary aliphatic alcohols, a phosphine, and an oxidant (typically DEAD Mitsu-nobu reaction). The second methodology is generally preferred, because more alcohols than alkyl halides are commercially available, and because Mitsunobu etherifications proceed quickly at room temperature with high chemoselectivity, as illustrated by Entry 3 in Table 7.11. Thus, neither amines nor C,H-acidic compounds are usually alkylated under Mitsunobu conditions as efficiently as phenols. The reaction proceeds smoothly with both electron-rich and electron-poor phenols. Both primary and secondary aliphatic alcohols can be used to O-alkylate phenols, but variable results have been reported with 2-(Boc-amino)ethanols [146,147]. [Pg.228]


See other pages where Ethers amino-, aliphatic is mentioned: [Pg.386]    [Pg.849]    [Pg.296]    [Pg.355]    [Pg.17]    [Pg.277]    [Pg.260]    [Pg.435]    [Pg.155]    [Pg.55]    [Pg.189]    [Pg.77]    [Pg.77]    [Pg.222]    [Pg.120]    [Pg.121]    [Pg.224]    [Pg.120]    [Pg.435]    [Pg.327]    [Pg.653]    [Pg.285]    [Pg.402]    [Pg.121]    [Pg.148]    [Pg.1537]    [Pg.16]    [Pg.49]    [Pg.162]    [Pg.54]    [Pg.460]    [Pg.50]    [Pg.50]    [Pg.435]    [Pg.769]    [Pg.204]    [Pg.45]    [Pg.17]    [Pg.456]    [Pg.164]    [Pg.145]    [Pg.333]    [Pg.181]    [Pg.256]    [Pg.196]   
See also in sourсe #XX -- [ Pg.363 ]




SEARCH



Aliphatic ethers

Amino ethers

© 2024 chempedia.info