Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ester spectroscopy

Section 20 21 Acyl chlorides anhydrides esters and amides all show a strong band for C=0 stretching m the infrared The range extends from about 1820 cm (acyl chlorides) to 1690 cm (amides) Their NMR spectra are characterized by a peak near 8 180 for the carbonyl carbon H NMR spectroscopy is useful for distinguishing between the groups R and R m esters (RCO2R ) The protons on the carbon bonded to O m R appear at lower field (less shielded) than those on the carbon bonded to C=0... [Pg.877]

The role of specific interactions in the plasticization of PVC has been proposed from work on specific interactions of esters in solvents (eg, hydrogenated chlorocarbons) (13), work on blends of polyesters with PVC (14—19), and work on plasticized PVC itself (20—23). Modes of iateraction between the carbonyl functionaHty of the plasticizer ester or polyester were proposed, mostly on the basis of results from Fourier transform infrared spectroscopy (ftir). Shifts in the absorption frequency of the carbonyl group of the plasticizer ester to lower wave number, indicative of a reduction in polarity (ie, some iateraction between this functionaHty and the polymer) have been reported (20—22). Work performed with dibutyl phthalate (22) suggests an optimum concentration at which such iateractions are maximized. Spectral shifts are in the range 3—8 cm . Similar shifts have also been reported in blends of PVC with polyesters (14—20), again showing a concentration dependence of the shift to lower wave number of the ester carbonyl absorption frequency. [Pg.124]

Infrared Spectroscopy (ir). Infrared curves are used to identify the chemical functionality of waxes. Petroleum waxes with only hydrocarbon functionality show slight differences based on crystallinity, while vegetable and insect waxes contain hydrocarbons, carboxyflc acids, alcohols, and esters. The ir curves are typically used in combination with other analytical methods such as dsc or gc/gpc to characterize waxes. [Pg.318]

The acetyl content of cellulose acetate may be calculated by difference from the hydroxyl content, which is usually determined by carbanilation of the ester hydroxy groups in pyridine solvent with phenyl isocyanate [103-71-9J, followed by measurement of uv absorption of the combined carbanilate. Methods for determining cellulose ester hydroxyl content by near-infrared spectroscopy (111) and acid content by nmr spectroscopy (112) and pyrolysis gas chromatography (113) have been reported. [Pg.257]

Esters are usually readily identified by their spectroscopic properties (70). Among these, infrared spectroscopy (ir) is especially useful for identifying the carbonyl of the ester group that has characteristic absorption bands. The C=0 absorption is very strong in the ir at 1750-1735 cm in addition,... [Pg.391]

Similarly, no systematic study of the IR spectra of the pyridopyridazines has been recorded, but the spectra of the [2,3-d] derivatives have been discussed <68AJCl29l). The diones of this series have also been studied <69MI21501), and IR used to distinguish between the structure (303) and the possible isomeric formulation (304) <74JHC35l). The IR spectra of some of the azodicarboxylic ester adducts <79X2027) have been recorded, whilst in the benzo fused systems some problems with the structure of acyl derivatives in the pyridazino[4,5-6]quinoline series have been resolved with the help of IR spectroscopy <71BSF906, 72BSF1588). [Pg.234]

IsoxazoIidine-3,3-dicarboxylic acid, 2-methoxy-dimethyl ester reaction with bases, 6, 47 Isoxazolidine-3,5-diones synthesis, 6, 112, 113 Isoxazoli dines conformation, 6, 10 3,5-disubstituted synthesis, 6, 109 oxidation, 6, 45-46 PE spectra, 6, 5 photolysis, 6, 46 pyrolysis, 6, 46 reactions, 6, 45-47 with acetone, 6, 47 with bases, 6, 47 reduction, 6, 45 ring fission, S, 80 spectroscopy, 6, 6 synthesis, 6, 3, 108-112 thermochemistry, 6, 10 Isoxazolidin-3-ol synthesis, 6, 111 Isoxazolidin-5-oI synthesis, 6, 111... [Pg.690]

Thiazolin-5-one, 2-alkoxy-4-arylazo-rearrangements, 5, 777 2-Thiazolin-5-one, 4-methyl-2-phenyl-protomeric equilibrium, 6, 249 4-Thiazolin-2-one, 4-aryl-reactions, 6, 286 4-Thiazolin-2-one, 3,4-dimethyl-protonation, 6, 286 4-Thiazolin-2-one, 4-methyl-reactions, 6, 286 Thiazolinones electrophilic attack, 5, 99 Thiazolin-2-ones IR spectroscopy, 6, 241 nucleophilic displacement, 5, 100 2-Thiazolin-4-ones reactions, 6, 287 2-substituted synthesis, 6, 306 synthesis, 5, 129 6, 309, 310 tautomerism, 6, 248 2-Thiazolin-5-ones IR spectroscopy, 6, 242 reactions, 6, 288 synthesis, 5, 138 tautomerism, 6, 249 4-Thiazolin-2-ones synthesis, 6, 314 4-Thiazolin-3-ylacetic acid esters... [Pg.876]

Absorption spectroscopy provides an opportunity to follow concentrations of individual species with time by observing the system at more than one wavelength. An example is the dehydration of prostaglandin E methyl ester, in which the essential chemistry is shown as follows ... [Pg.72]

Confirmation of the linear arrangement came by physical techniques, especially electron diffraction and infrared spectroscopy. Later the nonequivalence of the nitrogen atoms in diazoaeetic ester was shown by means of labeling. ... [Pg.84]

Hydrogenation of the a-unsaturated ester 32 was accompanied by extensive hydrogenolysis and NMR spectroscopy revealed that only 45% of a 3-deoxyhexose tetraacetate was present in the products and only one... [Pg.162]

Ill spectroscopy is a valuable tool for the structural analysis of acid derivatives. Acid chlorides, anhydrides, esters, and amides all show characteristic IR absorptions that can be used to identify these functional groups. [Pg.826]

Acid anhydride, amides from, 807 eleclrostatic potential map of, 791 esters from, 807 from acid chlorides, 806 from carboxylic acids, 795 1R spectroscopy of, 822-823 naming, 786... [Pg.1281]

Acid chloride—con l d esters from, 802-803 from carboxylic acids, 794-795 Grignard reaction of, 804-805 hydrolysis of, 802 IR spectroscopy of, 822-823 ketones from, 805 mechanism of formation from carboxylic acids, 795 naming, 786... [Pg.1282]

Likewise, thermolysis of 4-azidophenyl methyl ketone in methanol yields 5-acetyl-2-methoxy-3//-azepine (60%), compared to only an 8% yield from the photolytic reaction.78 119 The thermolysis of phenyl azide in refluxing cyclohexanol yields no 3H-azepine, only diphenyl-diazene (10%) and aniline (30%).74 In contrast, thermolysis of methyl 2-azidobenzoate in cyclohexanol furnishes a mixture of methyl 2-(cyclohexyloxy)-3//-azepine-3-carboxylate (20 % bp 127°C/0.1 Torr) and methyl 2-aminobenzoate (60%). Thermolysis of the azido ester in methanol under nitrogen in an autoclave at 150 C yields a 7 10 mixture (by 1HNMR spectroscopy) of the amino ester and methyl 2-methoxy-3//-azepine-3-carboxylate, which proved to be difficult to separate, and much tar.74 The acidic medium179 is probably responsible for the failure of methyl 2-azidoberjzoate to yield a 3//-azepine when thermolyzed in 3-methoxyphenol aniline (40%) is the major product.74... [Pg.147]

As revealed by IR-spectroscopy, the attachment of the polymer proceeds via acylation of aminopropyls absorbances of both amides (1650 cm-1) and esters (1740 cm-1) contribute to the spectrum of polyacrylate-coated aminopropyl-Aerosil (specific surface area 175 m2/g) [55], During the reaction, the accumulation of p-nitrophenyl ester groups in the support is accompanied by the liberation of p-nitrophenol into the contacting solution. Thus, the evaluation of the conformational state of adsorbing macromolecules can be performed by the simultaneous study of both processes by UV-spectroscopy as shown in Fig. 7. Apparently, at... [Pg.155]


See other pages where Ester spectroscopy is mentioned: [Pg.563]    [Pg.240]    [Pg.451]    [Pg.511]    [Pg.124]    [Pg.410]    [Pg.538]    [Pg.214]    [Pg.257]    [Pg.257]    [Pg.258]    [Pg.391]    [Pg.16]    [Pg.300]    [Pg.562]    [Pg.575]    [Pg.576]    [Pg.576]    [Pg.678]    [Pg.895]    [Pg.563]    [Pg.305]    [Pg.197]    [Pg.163]    [Pg.1282]    [Pg.1283]    [Pg.281]    [Pg.282]    [Pg.602]    [Pg.74]    [Pg.182]    [Pg.609]    [Pg.612]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Ester IR spectroscopy

Ester NMR spectroscopy

Infrared spectroscopy esters

Mass spectroscopy Esters

Nuclear magnetic resonance spectroscopy esters

Phosphoric esters spectroscopy

© 2024 chempedia.info