Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters carbonyl compounds, Hydroxy

Aldol additions and ester condensations have always been and still are the most popular reactions for the formation of carbon-carbon bonds (A.T. Nielsen, 1968). The earbonyl group acts as an a -synthon, the enoi or enolate as a d -synthon. Both reactions will be treated together here, and arguments, which are given for aldol additions, are also valid for ester condensations. Many famous name reactions belong to this category ). The products of aldol additions may be either /J-hydroxy carbonyl compounds or, after dehydration, or, -unsaturated carbonyl compounds. [Pg.55]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

An alkene activated by an electron-withdrawing group—often an acrylic ester 2 is used—can react with an aldehyde or ketone 1 in the presence of catalytic amounts of a tertiary amine, to yield an a-hydroxyalkylated product. This reaction, known as the Baylis-Hillman reaction, leads to the formation of useful multifunctional products, e.g. o -methylene-/3-hydroxy carbonyl compounds 3 with a chiral carbon center and various options for consecutive reactions. [Pg.28]

Optically Active 3-Hydroxy Esters by Condensation of ferf-Butyl ( + )-(/f)-2-(4-Mcthylphcnylsullinyl)acetate with Carbonyl Compounds General Procedure35,37 ... [Pg.659]

In the presence of a base such as l,4-diazabicyclo[2.2.2]octane (DABCO) or tri-alkylphosphines, conjugated carbonyl compounds such as esters and amides add to aldehydes via the a-carbon to give a-alkenyl-P-hydroxy esters or amides. This sequence is called the Baylis-Hillman reaction and a simple example is... [Pg.1212]

Reaction of optically active a-sulphinyl acetate 298a with prochiral carbonyl compounds proceeds with a high asymmetric induction - , the degree of which depends on the nature of substituents at the carbonyl group (equation 252 Table 22) . The jS-hydroxy sulphoxides 422 formed may be transformed to optically active p-hydroxycarboxylic esters 423 (equation 253) and optically active long-chain lactones 424 99 (equation 254). Corey and coworkers have used this method to introduce a chiral centre at C-3 in their synthesis of maytansin °°, and Papageorgiou and Benezra for the synthesis of chiral a-hydroxyalkyl acrylates 425 ° (equation 255). [Pg.329]

Covalently bonded chiral auxiliaries readily induce high stereoselectivity for propionate enolates, while the case of acetate enolates has proved to be difficult. Alkylation of carbonyl compound with a novel cyclopentadienyl titanium carbohydrate complex has been found to give high stereoselectivity,44 and a variety of ft-hydroxyl carboxylic acids are accessible with 90-95% optical yields. This compound was also tested in enantioselective aldol reactions. Transmetalation of the relatively stable lithium enolate of t-butyl acetate with chloro(cyclopentadienyl)-bis(l,2 5,6-di-<9-isopropylidene-a-D-glucofuranose-3-0-yl)titanate provided the titanium enolate 66. Reaction of 66 with aldehydes gave -hydroxy esters in high ee (Scheme 3-23). [Pg.155]

Davis et al.111 developed another method for reagent-controlled asymmetric oxidation of enolates to a-hydroxy carbonyl compounds using (+)-camphor-sulfonyl oxaziridine (147) as the oxidant. This method afforded synthetically useful ee (60-95%) for most carbonyl compounds such as acyclic keto esters, amides, and a-oxo ester enolates (Table 4-20). [Pg.252]

Although intermolecular additions to a,f5-unsaturated carbonyl compounds have not been used as often, these transformations are also attractive from a synthetic point of view for the synthesis of 5-lactones or 5-hydroxy esters. An example is shown in Scheme 12.11 [5d]. [Pg.439]

The method described here belongs to a group of recently developed procedures comprising the spontaneous intramolecular acylation of active derivatives of metalated p-hydroxy alkanoates. These compounds are available by reactions of carbonyl compounds with ester enolates prepared from S-phenyl alkanethioates6 or phenyl alkanoates,15 as well as by Reformatsky16 or Darzens17 reactions of carbonyl compounds with phenyl a-halo alkanoates. [Pg.208]

Chiral 4-chloro-3-hydroxybutanoate esters are important chiral C4-building blocks [43-53]. For example, (i )- and (S)-isomers can be converted to L-car-nitine and the hydroxymethyl glutaryl-CoA reductase inhibitor. Since these compounds are used as pharmaceuticals, a high optical purity is required. A practical enzymatic method for the production of chiral 4-chloro-3-hydroxy-butanoate esters from prochiral carbonyl compounds, i.e.,4-chloroacetoacetate esters, or racemic 4-chloro-3-hydroxybutanoate esters is described. [Pg.116]

Types of compounds are arranged according to the following system hydrocarbons and basic heterocycles hydroxy compounds and their ethers mercapto compounds, sulfides, disulfides, sulfoxides and sulfones, sulfenic, sulfinic and sulfonic acids and their derivatives amines, hydroxylamines, hydrazines, hydrazo and azo compounds carbonyl compounds and their functional derivatives carboxylic acids and their functional derivatives and organometallics. In each chapter, halogen, nitroso, nitro, diazo and azido compounds follow the parent compounds as their substitution derivatives. More detail is indicated in the table of contents. In polyfunctional derivatives reduction of a particular function is mentioned in the place of the highest functionality. Reduction of acrylic acid, for example, is described in the chapter on acids rather than functionalized ethylene, and reduction of ethyl acetoacetate is discussed in the chapter on esters rather than in the chapter on ketones. [Pg.321]

Dialkylboron trifluoromethanesulfonates (Inflates) are particularly useful reagents for the preparation of boron enolates from carbonyl compounds, including ketones, thioesters and acyloxazoiidinones. Recentiy, the combination of dicylohexyiboron trifluoromethanesulfonate and triethyiamine was found to effect the enolization of carboxyiic esters. The boron-mediated asymmetric aldoi reaction of carboxyiic esters is particuiariy usefui for the construction of anti p-hydroxy-a-melhyl carbonyl units. The present procedure is a siight modification of that reported by Brown, et ai. ... [Pg.201]

Dipolar cycloaddition reactions between nitrile oxides and aUcenes produce 2-isoxazolines. Through reductive cleavage of the N—O bond of the 2-isoxazohnes, the resulting heterocycles can be readily transformed into a variety of important synthetic intermediates such as p-hydroxy ketones (aldols), p-hydroxy esters, a,p-unsaturated carbonyl compounds, y-amino alcohols, imino ketones and so forth (7-12). [Pg.779]

In 1977, an article from the authors laboratories [9] reported an TiCV mediated coupling reaction of 1-alkoxy-l-siloxy-cyclopropane with aldehydes (Scheme 1), in which the intermediate formation of a titanium homoenolate (path b) was postulated instead of a then-more-likely Friedel-Crafts-like mechanism (path a). This finding some years later led to the isolation of the first stable metal homoenolate [10] that exhibits considerable nucleophilic reactivity toward (external) electrophiles. Although the metal-carbon bond in this titanium complex is essentially covalent, such titanium species underwent ready nucleophilic addition onto carbonyl compounds to give 4-hydroxy esters in good yield. Since then a number of characterizable metal homoenolates have been prepared from siloxycyclopropanes [11], The repertoire of metal homoenolate reactions now covers most of the standard reaction types ranging from simple... [Pg.4]

As do aldols, /3-hydroxy esters dehydrate (usually readily) to a,/3-unsaturated carbonyl compounds. [Pg.836]


See other pages where Esters carbonyl compounds, Hydroxy is mentioned: [Pg.389]    [Pg.229]    [Pg.156]    [Pg.659]    [Pg.329]    [Pg.159]    [Pg.306]    [Pg.117]    [Pg.115]    [Pg.199]    [Pg.132]    [Pg.135]    [Pg.215]    [Pg.210]    [Pg.676]    [Pg.105]    [Pg.1160]    [Pg.288]    [Pg.799]    [Pg.208]    [Pg.1160]    [Pg.293]    [Pg.424]    [Pg.135]    [Pg.233]    [Pg.229]    [Pg.119]   


SEARCH



3- Hydroxy carbonyl

Esters carbonyl

Esters compounds

Hydroxy carbonylations

Hydroxy compounds

Hydroxy esters

© 2024 chempedia.info