Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esterases pyrethroid metabolism

It was reported that the distribution and activities of esterases that catalyze pyrethroid metabolism using several human and rat tissues, including small intestine, liver, and serum, were examined [30]. The major esterase in human intestine was hCE2. //c/n.v-Permethrin was effectively hydrolyzed by pooled human intestinal microsomes (five individuals), while deltamethrin and bioresmethrin were not. This result correlated well with the substrate specificity of recombinant hCE2. In contrast, pooled rat intestinal microsomes (five animals) hydrolyzed trans-permethrin 4.5 times slower than the human intestinal microsomes. Furthermore, pooled samples of cytosol from human or rat liver were ca. half as hydrolytically active as the corresponding microsome fraction toward pyrethroids however, the cytosolic fractions had significant amounts (ca. 40%) of the total hydrolytic activity. Moreover, a sixfold interindividual variation in hCEl protein expression in human hepatic cytosols was observed. [Pg.124]

Godin SJ, Crow JA, Scollon EJ, Hughes MF, DeVito MJ, Ross MK (2007) Identification of rat and human cytochrome p450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate. Drug Metab Dispos 35 1664-1671... [Pg.133]

The organophosphorons insecticides dimethoate and diazinon are mnch more toxic to insects (e.g., housefly) than they are to the rat or other mammals. A major factor responsible for this is rapid detoxication of the active oxon forms of these insecticides by A-esterases of mammals. Insects in general appear to have no A-esterase activity or, at best, low A-esterase activity (some earlier stndies confnsed A-esterase activity with B-esterase activity) (Walker 1994b). Diazinon also shows marked selectivity between birds and mammals, which has been explained on the gronnds of rapid detoxication by A-esterase in mammals, an activity that is absent from the blood of most species of birds (see Section 23.23). The related OP insecticides pirimiphos methyl and pirimiphos ethyl show similar selectivity between birds and mammals. Pyrethroid insecticides are highly selective between insects and mammals, and this has been attributed to faster metabolic detoxication by mammals and greater sensitivity of target (Na+ channel) in insects. [Pg.62]

The metabolism of permethrin will be taken more generally as an example of the metabolism of pyrethroids (Figure 12.2). The two types of primary metabolic attack are by microsomal monooxygenases and esterases. Monooxygenase attack involves... [Pg.232]

Many investigations of relevant enzymes in transformation of xenobiotics by aquatic species have shown that the similar enzymes observed in metabolism in soil, plant, and mammals play a role, such as esterases and oxidases [10, 159, 160]. Metabolism of pyrethroids has been most extensively studied in fish for cypermethrin (5) and permethrin (15). Aromatic hydroxylation at the 4 -position of the 3-phenoxybenzyl moiety followed by conjugation with glucuronic acid... [Pg.189]

There are two types of esterases that are important in metabolizing insecticides, namely, carboxylesterases and phosphatases (also called phosphorotriester hydrolases or phosphotriesterases). Carboxylesterases, which are B-esterases, play significant roles in degrading organophosphates, carbamates, pyrethroids, and some juvenoids in insects. The best example is malathion hydrolysis, which yields both a- and (i-monoacids and ethanol (Figure 8.10). [Pg.149]

Fenvalerate and other a-cyano pyrethroids, however, are consistently more resistant to oxidative attack than their noncyano analogs. Liver is the predominant site of fenvalerate metabolism via hydrolysis by one or more hepatic microsomal esterases inhibition of these enzymes results in enhanced toxicity. Hydrolysis has also been demonstrated in plasma, kidney, stomach, and brain tissues. Except for brain, however, these tissues were relatively unimportant in the detoxification process. [Pg.301]

Oncorhynchus mykiss) - one of the more sensitive aquatic species - have significantly lower rates of metabolism and elimination of fenvalerate than those reported for birds and mammals show little or no esterase activity towards pyrethroids and substantially lower oxidative activity than warm-blooded animals efficiently accumulate fenvalerate from the medium, and show greater intrinsic sensitivity of the central nervous system when compared with birds and mammals. [Pg.301]


See other pages where Esterases pyrethroid metabolism is mentioned: [Pg.223]    [Pg.103]    [Pg.19]    [Pg.38]    [Pg.62]    [Pg.234]    [Pg.1101]    [Pg.1102]    [Pg.182]    [Pg.182]    [Pg.184]    [Pg.1101]    [Pg.1102]    [Pg.120]    [Pg.185]    [Pg.804]    [Pg.2159]    [Pg.259]    [Pg.175]    [Pg.301]    [Pg.1026]    [Pg.889]   
See also in sourсe #XX -- [ Pg.19 , Pg.232 , Pg.233 , Pg.234 ]




SEARCH



Esterase

Esterases

Esterases esterase

Esterases metabolism

Esterases pyrethroids

Pyrethroid

Pyrethroids

© 2024 chempedia.info