Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constant, and electrode

Relationship of change in free energy to equilibrium constants and electrode potentials... [Pg.16]

Having introduced matters pertaining to the electrochemical series earlier, it is only relevant that an appraisal is given on some of its applications. The coverage hereunder describes different examples which include aspects of spontaneity of a galvanic cell reaction, feasibility of different species for reaction, criterion of choice of electrodes to form galvanic cells, sacrificial protection, cementation, concentration and tempera lure effects on emf of electrochemical cells, clues on chemical reaction, caution notes on the use of electrochemical series, and finally determination of equilibrium constants and solubility products. [Pg.650]

Reactions in Eqns. 9-69 and 9-70 8me the dissociation processes of (1) the acidic protons from adsorbed hydronium ions and (2) the basic protons from adsorbed water molecules on the electrode interface, respectively. Eqn. 9-71 gives the equilibrium constants, and K, of these proton dissociation reactions ... [Pg.319]

The thermodynamic information is normally summarized in a Pourbaix diagram7. These diagrams are constructed from the relevant standard electrode potential values and equilibrium constants and show, for a given metal and as a function of pH, which is the most stable species at a particular potential and pH value. The ionic activity in solution affects the position of the boundaries between immunity, corrosion, and passivation zones. Normally ionic activity values of 10 6 are employed for boundary definition above this value corrosion is assumed to occur. Pourbaix diagrams for many metals are to be found in Ref. 7. [Pg.354]

When the pH is specified, each biochemical half reaction makes an independent contribution to the apparent equilibrium constant K for the reaction written in terms of reactants rather than species. The studies of electochemical cells have played an important role in the development of biochemical thermodynamics, as indicated by the outstanding studies by W. Mansfield Clarke (1). The main source of tables of ° values for biochemical half reactions has been those of Segel (2). Although standard apparent reduction potentials ° can be measured for some half reactions of biochemical interest, their direct determination is usually not feasible because of the lack of reversibility of the electrode reactions. However, standard apparent reduction potentials can be calculated from for oxidoreductase reactions. Goldberg and coworkers (3) have compiled and evaluated the experimental determinations of apparent equilibrium constants and standard transformed enthalpies of oxidoreductase reactions, and their tables have made it possible to calculate ° values for about 60 half reactions as functions of pH and ionic strength at 298.15 K (4-8). [Pg.173]

Table 8.3. Equilibrium Constants and Standard Electrode Potentials for Some Reduction Half-Reactions... Table 8.3. Equilibrium Constants and Standard Electrode Potentials for Some Reduction Half-Reactions...
Numerous applications of standard electrode potentials have been made in various aspects of electrochemistry and analytical chemistry, as well as in thermodynamics. Some of these applications will be considered here, and others will be mentioned later. Just as standard potentials which cannot be determined directly can be calculated from equilibrium constant and free energy data, so the procedure can be reversed and electrode potentials used for the evaluation, for example, of equilibrium constants which do not permit of direct experimental study. Some of the results are of analjrtical interest, as may be shown by the following illustration. Stannous salts have been employed for the reduction of ferric ions to ferrous ions in acid solution, and it is of interest to know how far this process goes toward completion. Although the solutions undoubtedly contain complex ions, particularly those involving tin, the reaction may be represented, approximately, by... [Pg.478]

Both involve high-pressure electrochemistry. One is the measurement of the pressure dependence of the rate constant for electron transfer in a given couple at an electrode, but it is not immediately clear how feg] and the corresponding volume of activation relate to feex and AV, respectively, for the self-exchange reaction of the same couple. This is a major theme of this chapter, and is pursued in detail below. The other method involves invocation of the cross relation of Marcus [5], which expresses the rate constant ku for the oxidation of, say, A by B+ in terms of its equilibrium constant and the rate constants kn and fe22 for the respective A+/A and B+/B self-exchange reactions ... [Pg.169]

Many equilibrium constants (and free-energy values) have been determined experimentally by EMF measurements of electric cells. One difficulty that has not been overcome for many possible half-cells is that of finding an electrode surface that permits the half-cell (electron) reaction to take place in a reversible manner. A platinum electrode covered with finely divided platinum (platinum black) is effective for many halfcells. [Pg.370]

For a system at equilibrium, if the temperature is changed by AT, then the equilibrium concentrations will change because of the thermodynamic relationship (SltiK/5T)f,= -AH fR7 between the equilibrium constant and the enthalpy change for the reaction, AH. In most applications and commercial instruments, the sample is contained between two electrodes... [Pg.429]

The change in the concentration of H3O+ is monitored with a pH ion-selective electrode, for which the cell potential is given by equation 11.9. The relationship between the concentration of H3O+ and CO2 is given by rearranging the equilibrium constant expression for reaction 11.10 thus... [Pg.484]

The standard electrode potentials , or the standard chemical potentials /X , may be used to calculate the free energy decrease —AG and the equilibrium constant /T of a corrosion reaction (see Appendix 20.2). Any corrosion reaction in aqueous solution must involve oxidation of the metal and reduction of a species in solution (an electron acceptor) with consequent electron transfer between the two reactants. Thus the corrosion of zinc ( In +zzn = —0-76 V) in a reducing acid of pH = 4 (a = 10 ) may be represented by the reaction ... [Pg.59]

One of the most important characteristics of a cell is its voltage, which is a measure of reaction spontaneity. Cell voltages depend on the nature of the half-reactions occurring at the electrodes (Section 18.2) and on the concentrations of species involved (Section 18.4). From the voltage measured at standard concentrations, it is possible to calculate the standard free energy change and the equilibrium constant (Section 18.3) of the reaction involved. [Pg.481]

The general approach illustrated by Example 18.7 is widely used to determine equilibrium constants for solution reactions. The pH meter in particular can be used to determine acid or base equilibrium constants by measuring the pH of solutions containing known concentrations of weak acids or bases. Specific ion electrodes are readily adapted to the determination of solubility product constants. For example, a chloride ion electrode can be used to find [Cl-] in equilibrium with AgCl(s) and a known [Ag+]. From that information, Ksp of AgCl can be calculated. [Pg.495]

In the lead-acid battery, sulfuric acid has to be considered as an additional component of the charge-discharge reactions. Its equilibrium constant influences the solubility of Pb2+ and so the potential of the positive and negative electrodes. Furthermore, basic sulfates exist as intermediate products in the pH range where Fig. 1 shows only PbO (cf. corresponding Pour-baix diagrams in Ref. [5], p. 37, or in Ref. [11] the latter is cited in Ref. [8]). Table 2 shows the various compounds. [Pg.159]

As shown in Fig. 33, the decreasing mechanism of this fluctuation is summarized as follows At a place on the electrode surface where metal dissolution happens to occur, the surface concentration of the metal ions simultaneously increases. Then the dissolved part continues to grow. Consequently, as the concentration gradient of the diffusion layer takes a negative value, the electrochemical potential component contributed by the concentration gradient increases. Here it should be noted that the electrochemical potential is composed of two components one comes from the concentration gradient and the other from the surface concentration. Then from the reaction equilibrium at the electrode surface, the electrochemical potential must be kept constant, so that the surface concentration component acts to compensate for the increment of the concen-... [Pg.270]

In the introductory chapter we stated that the formation of chemical compounds with the metal ion in a variety of formal oxidation states is a characteristic of transition metals. We also saw in Chapter 8 how we may quantify the thermodynamic stability of a coordination compound in terms of the stability constant K. It is convenient to be able to assess the relative ease by which a metal is transformed from one oxidation state to another, and you will recall that the standard electrode potential, E , is a convenient measure of this. Remember that the standard free energy change for a reaction, AG , is related both to the equilibrium constant (Eq. 9.1)... [Pg.176]

In addition to defined standard conditions and a reference potential, tabulated half-reactions have a defined reference direction. As the double arrow in the previous equation indicates, E ° values for half-reactions refer to electrode equilibria. Just as the value of an equilibrium constant depends on the direction in which the equilibrium reaction is written, the values of S ° depend on whether electrons are reactants or products. For half-reactions, the conventional reference direction is reduction, with electrons always appearing as reactants. Thus, each tabulated E ° value for a half-reaction is a standard reduction potential. [Pg.1383]


See other pages where Equilibrium constant, and electrode is mentioned: [Pg.4]    [Pg.4]    [Pg.289]    [Pg.416]    [Pg.128]    [Pg.345]    [Pg.51]    [Pg.341]    [Pg.98]    [Pg.1180]    [Pg.475]    [Pg.1179]    [Pg.604]    [Pg.188]    [Pg.744]    [Pg.549]    [Pg.190]    [Pg.182]    [Pg.138]    [Pg.476]    [Pg.602]    [Pg.484]    [Pg.772]    [Pg.120]    [Pg.230]    [Pg.201]    [Pg.174]   


SEARCH



And equilibrium constant

Electrode equilibrium

© 2024 chempedia.info