Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides elimination

Step 1 Stereoselective epoxidation from the less hindered a-face. Step 2 Regioselective base-mediated epoxide elimination. [Pg.81]

Fig (17) Transformation of 6-methoxy-a-tetralone (137) is described. Alkylation of (137) followed by cleavage of lactone and aldol condensation provided (144), which is converted to (146) by reduction, epoxidation, elimination and hydrogenation respectively. It is converted to phenol (147). Oxidation of (147) yields triptonide (148) which on reduction gives tiiptolide (149). [Pg.202]

Fig (19) Octalin ketal (163) is converted to kete dithioacetal (164) by the cleavage of ketal function and condensation with carbon disulfide and methyl iodide. Subjection of (164) to the action of dimethylsulfonium niethylide and acid hydrolysis leads to the formation of unsaturated lactone (165).lts furan silyl ether derivative is caused to undergo Diets-Atder reaction with methyl acrylate to obtain salicyctic ester (166) which is converted by standard organic reactions toabietane ether (167). It is converted to aiiylic alcohol (168) by epoxidation and elimination. Alcohol (169) obtained from (168) yields orthoamide which undergoes transformation to amide (170). Its conversion to the previously reported intermediate has been achieved by epoxidation, elimination and hydrolysis. [Pg.206]

Other Enantioselective Reactions. Enantioselective epoxide elimination by chiral bases has been demonstrated. More recently, the enantioselective [2,3]-Wittig rearrangement of a 13-membered propargylic ally lie ether has been performed using the lithium amide of (f ,f )-(l) as the base for deprotonation (eq 15). For this particular substrate, THF is a better solvent than ether, although pentane produces better results in a related transformation (eq 16). In fact, a change in solvent in this type of reaction has been shown to lead to a reversal of the stereoselectivity of the transformation. ... [Pg.254]

A computational study of the concerted C(sp )-0 reductive elimination of olefin oxides from complexes 19a and 19b showed that the Gibbs activation energy of epoxide elimination increases in the following order of 19a 19b 20 [33]. In other words, migration of a secondary aUcyl from the Pt center to the oxetane oxygen atom is a more facile process than that involving a primary alkyl group. [Pg.116]

Interestingly, an epoxide also forms as a primary reaction product along with the product of its hydrolysis, ethylene glycol, in C(sp )-0 reductive elimination from (dpms)Pt (C2H40H)(OH)2 complex 21 in aqueous solutions (Fig. 13) [34]. No Pt oxetane intermediates could be detected in this system. Even if the oxetane 20 did form, the expected low reactivity of this compound would preclude the epoxide elimination at relatively low temperatures. It was assumed that a three-center C-O elimination mechanism is not involved in this transformation. [Pg.117]

Pisani F, Fazio A, Artesi C, Oteri G, Spina E, Tomson T, Perucca E. Impairment of carbamazepine-10,11-epoxide elimination by valnoctamide, avalpromide isomer, inhealtiiy subjects. BrJ Clin Pharmacol ( 99Z) 34, 85-7. [Pg.537]

Levy RH, Kerr BM, Loiseau P, Guyot M and Wilensky AJ. Inhibition of carbamazepine epoxide elimination tty valpromide and valproic acid Epilepsia (1986) 27, 592. [Pg.538]

Regioselectivity of C—C double bond formation can also be achieved in the reductiv or oxidative elimination of two functional groups from adjacent carbon atoms. Well estab llshed methods in synthesis include the reductive cleavage of cyclic thionocarbonates derivec from glycols (E.J. Corey, 1968 C W. Hartmann, 1972), the reduction of epoxides with Zn/Nal or of dihalides with metals, organometallic compounds, or Nal/acetone (seep.lS6f), and the oxidative decarboxylation of 1,2-dicarboxylic acids (C.A. Grob, 1958 S. Masamune, 1966 R.A. Sheldon, 1972) or their r-butyl peresters (E.N. Cain, 1969). [Pg.142]

In all cases examined the ( )-isomers of the allylic alcohols reacted satisfactorily in the asymmetric epoxidation step, whereas the epoxidations of the (Z)-isomers were intolerably slow or nonstereoselective. The eryfhro-isomers obtained from the ( )-allylic alcohols may, however, be epimerized in 95% yield to the more stable tlireo-isomers by treatment of the acetonides with potassium carbonate (6a). The competitive -elimination is suppressed by the acetonide protecting group because it maintains orthogonality between the enolate 7i-system and the 8-alkoxy group (cf the Baldwin rules, p. 316). [Pg.265]

As a further application of the reaction, the conversion of an endocyclic double bond to an c.xo-methylene is possible[382]. The epoxidation of an cWo-alkene followed by diethylaluminum amide-mediated isomerization affords the allylic alcohol 583 with an exo double bond[383]. The hydroxy group is eliminated selectively by Pd-catalyzed hydrogenolysis after converting it into allylic formate, yielding the c.ro-methylene compound 584. The conversion of carvone (585) into l,3-disiloxy-4-methylenecyclohexane (586) is an example[382]. [Pg.369]

Potassium Amides. The strong, extremely soluble, stable, and nonnucleophilic potassium amide base (42), potassium hexamethyldisilazane [40949-94-8] (KHMDS), KN [Si(CH2]2, pX = 28, has been developed and commercialized. KHMDS, ideal for regio/stereospecific deprotonation and enolization reactions for less acidic compounds, is available in both THF and toluene solutions. It has demonstrated benefits for reactions involving kinetic enolates (43), alkylation and acylation (44), Wittig reaction (45), epoxidation (46), Ireland-Claison rearrangement (47,48), isomerization (49,50), Darzen reaction (51), Dieckmann condensation (52), cyclization (53), chain and ring expansion (54,55), and elimination (56). [Pg.519]

Selectivity of propylene oxide from propylene has been reported as high as 97% (222). Use of a gas cathode where oxygen is the gas, reduces required voltage and eliminates the formation of hydrogen (223). Addition of carbonate and bicarbonate salts to the electrolyte enhances ceU performance and product selectivity (224). Reference 225 shows that use of alternating current results in reduced current efficiencies, especiaHy as the frequency is increased. Electrochemical epoxidation of propylene is also accompHshed by using anolyte-containing silver—pyridine complexes (226) or thallium acetate complexes (227,228). [Pg.141]

Some cleavage takes place even if the phenoHc hydroxyl is blocked as an ether link to another phenylpropane unit and quinonemethide formation is prevented. If the a- or y-carbon hydroxyl is free, alkaH-catalyzed neighboring-group attack can take place with epoxide formation and P-aryloxide elimination. In other reactions, blocked phenoHc units are degraded if an a-carbonyl group is present. [Pg.261]

The third and newest modified natural mbber available is epoxidized natural mbber (ENR). This modification was actually discovered as early as 1922 (50), although the elimination of ring opening and side reactions to give a purely epoxidized material took another 50 years or so to achieve (51). The resulting polymer is a new material, with properties totally different from natural mbber, as iadicated ia Table 5. [Pg.271]

Besides direct hydrolysis, heterometaHic oxoalkoxides may be produced by ester elimination from a mixture of a metal alkoxide and the acetate of another metal. In addition to their use in the preparation of ceramic materials, bimetallic oxoalkoxides having the general formula (RO) MOM OM(OR) where M is Ti or Al, is a bivalent metal (such as Mn, Co, Ni, and Zn), is 3 or 4, and R is Pr or Bu, are being evaluated as catalysts for polymerization of heterocychc monomers, such as lactones, oxiranes, and epoxides. An excellent review of metal oxoalkoxides has been pubUshed (571). [Pg.164]

The manufacture and uses of oxiranes are reviewed in (B-80MI50500, B-80MI50501). The industrially most important oxiranes are oxirane itself (ethylene oxide), which is made by catalyzed air-oxidation of ethylene (cf. Section 5.05.4.2.2(f)), and methyloxirane (propylene oxide), which is made by /3-elimination of hydrogen chloride from propene-derived 1-chloro-2-propanol (cf. Section 5.05.4.2.1) and by epoxidation of propene with 1-phenylethyl hydroperoxide cf. Section 5.05.4.2.2(f)) (79MI50501). [Pg.118]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

The opening of epoxides with neighboring keto groups, accompanied by vinylogous jS-elimination, has already been mentioned (section V). This is an extension of the jS-elimination reactions which occur when a,p- or jS,y-epoxy ketones are opened with acid or base. a,jS-Epoxy ketones give a-substituted a,jS-unsaturated ketones [(162), for example], and j5,y-epoxy ketones give y-substituted a,jS-unsaturated ketones [(163), for example] ... [Pg.358]

The immediate product of opening of the a-epoxide (160) is the chlorohydrin (161) which slowly eliminates to give the olefin. In contrast, the epimeric chlorohydrin (165) formed from the jS-epoxide (164) eliminates spontaneously to give the same product (162). This difference is explicable by the known enolization preferences of 5oc- and 5/3-3-ketones. [Pg.358]


See other pages where Epoxides elimination is mentioned: [Pg.203]    [Pg.241]    [Pg.776]    [Pg.776]    [Pg.203]    [Pg.776]    [Pg.203]    [Pg.241]    [Pg.776]    [Pg.776]    [Pg.203]    [Pg.776]    [Pg.282]    [Pg.100]    [Pg.391]    [Pg.545]    [Pg.435]    [Pg.441]    [Pg.150]    [Pg.23]    [Pg.72]    [Pg.124]    [Pg.424]    [Pg.426]    [Pg.441]    [Pg.9]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



© 2024 chempedia.info