Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes phosphate reactions

Thus far, we have considered enzyme-catalyzed reactions involving one or two substrates. How are the kinetics described in those cases in which more than two substrates participate in the reaction An example might be the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Chapter 19) ... [Pg.454]

Interestingly, however, the mechanisms of the two phosphate hydrolysis reactions in steps 9 and 11 are not the same. In step 9, water is the nucleophile, but in the glucose 6-phosphate reaction of step 11, a histidine residue on the enzyme attacks phosphorus, giving a phosphoryl enzyme intermediate that subsequently reacts with water. [Pg.1164]

Instead of immobilizing the antibody onto the transducer, it is possible to use a bare (amperometric or potentiometric) electrode for probing enzyme immunoassay reactions (42). In this case, the content of the immunoassay reaction vessel is injected to an appropriate flow system containing an electrochemical detector, or the electrode can be inserted into the reaction vessel. Remarkably low (femtomolar) detection limits have been reported in connection with the use of the alkaline phosphatase label (43,44). This enzyme catalyzes the hydrolysis of phosphate esters to liberate easily oxidizable phenolic products. [Pg.185]

In subsequent experiments (66), this locked substrate was used to obtain evidence for the hypothesis (67) that enzyme-bound y-glutamyl phosphate 14 is an intermediate in the enzyme-catalyzed reaction. All attempts to isolate this acyl phosphate 14 have failed (66), presumably because of the marked tendency of this intermediate to cyclize to pyrrolidonecarboxyUc acid, 15, and to hydrolyze to glutamic acid. [Pg.392]

Five of the first six enzyme activities of pyrimidine biosynthesis reside on multifunctional polypeptides. One such polypeptide catalyzes the first three reactions of Figure 34-2 and ensures efficient channeling of carbamoyl phosphate to pyrimidine biosynthesis. A second bifunctional enzyme catalyzes reactions 5 and 6. [Pg.296]

GOT (AST is the more recent abbreviation) catalyzes the transamination of 1-aspartic acid in the presence of a-ketoglut-aric acid, with pyridoxal phosphate being a required co-enzyme. The reaction is ... [Pg.200]

The reaction catalyzed by KDO 8-phosphate synthetase (reaction 2, Scheme 35) was first observed by Levin and Racker9 in extracts from Pseudomonas aeruginosa (see Scheme 1), and later by Ghalambor and Heath29 in extracts from Escherichia coli 0111 B4 and J-5. In the initial experiments of Levin and Racker,135 the fate of D-ribose 5-phosphate in crude bacterial extracts was studied, and the KDO 8-phosphate discovered by the authors is really derived from D-ribose 5-phosphate by three, sequential, enzyme-catalyzed reactions (see Scheme 36). [Pg.379]

Pyridoxal phosphate is a required coenzyme for many enzyme-catalyzed reactions. Most of these reactions are associated with the metabolism of amino acids, including the decarboxylation reactions involved in the synthesis of the neurotransmitters dopamine and serotonin. In addition, pyridoxal phosphate is required for a key step in the synthesis of porphyrins, including the heme group that is an essential player in the transport of molecular oxygen by hemoglobin. Finally, pyridoxal phosphate-dependent reactions link amino acid metabolism to the citric acid cycle (chapter 16). [Pg.203]

Relationships used in [ OJphosphate analysis to determine the probability that an enzyme s reaction with a phosphate containing m labeled oxygens in the presence of unlabeled water will result in the release of a phosphate that contains n labeled oxygens. [Pg.683]

From bisubstrate, kinetic analysis with a transferase from hen oviduct that, under the conditions of the assay, formed only GlcNAc-PP-Dol, it followed that both dolichol phosphate and UDP-GlcNAe have to he bound to the enzyme before release of the product occurs.52 However, the fact that only partially purified preparations have thus far been obtained (the preparations may also still be contaminated with substrates and product), together with experimental difficulties in handling both the substrate dolichol phosphate (which, furthermore, is not one compound, see the earlier discussion) and the unstable enzyme (enveloped in micelles of detergent), make difficult a sensible interpretation and comparison of the kinetic parameters detenuined for the different enzvme-preparations. The solubilized enzymes catalyzing reactions 1,2, and 3 have in common their alkaline pH optima and dependence on Mg2+ or Mn2+ ions. The latter fact makes (ethylenedinitrilo)tetraacetic acid (EDTA) a reversible inhibitor of enzyme activity and an important experimental tool. [Pg.297]

This reaction rearranges the carbonyl and hydroxyl groups on carbons 1 and 2. However, more than 80% of the enzymatic rate acceleration has been traced to enzyme-substrate interactions involving the phosphate group on carbon 3 of the substrate. This was determined by a careful comparison of the enzyme-catalyzed reactions with glyceraldehyde 3-phosphate and with glyceraldehyde (no phosphate group at position 3) as substrate. [Pg.199]

Metabolism of Glycerol Glycerol obtained from the breakdown of fat is metabolized by conversion to dihydroxy-acetone phosphate, a glycolytic intermediate, in two enzyme-catalyzed reactions. Propose a reaction sequence for glycerol metabolism. On which known enzyme-catalyzed reactions is your proposal based Write the net equation for the conversion of glycerol to pyruvate according to your scheme. [Pg.558]

Outline in detail, using structural formulas, the enzyme-catalyzed reactions by which cells in the human body convert glyceraldehyde 3-phosphate into pyruvate. [Pg.532]

Probably the most common and widespread control mechanisms in cells are allosteric inhibition and allosteric activation. These mechanisms are incorporated into metabolic pathways in many ways, the most frequent being feedback inhibition. This occurs when an end product of a metabolic sequence accumulates and turns off one or more enzymes needed for its own formation. It is often the first enzyme unique to the specific biosynthetic pathway for the product that is inhibited. When a cell makes two or more isoenzymes, only one of them may be inhibited by a particular product. For example, in Fig. 11-1 product P inhibits just one of the two isoenzymes that catalyzes conversion of A to B the other is controlled by an enzyme modification reaction. In bacteria such as E. coli, three isoenzymes, which are labeled I, II, and III in Fig. 11-3, convert aspartate to (3-aspartyl phosphate, the precursor to the end products threonine, isoleucine, methionine, and lysine. Each product inhibits only one of the isoenzymes as shown in the figure. [Pg.539]

The phosphate ester of the aldehyde form of vitamin B6, pyridoxal phosphate (pyridoxal-P or PLP), is required by many enzymes catalyzing reactions of amino acids and amines. The reactions are numerous, and pyridoxal phosphate is surely one of nature s most versatile catalysts. The story begins with biochemical transamination, a process of central importance in nitrogen metabolism. In 1937, Alexander Braunstein and Maria Kritzmann, in Moscow, described the transamination reaction by which amino groups can be transferred from one carbon skeleton to another.139 140 For example, the amino group of glutamate can be transferred to the carbon skeleton of oxaloacetate to form aspartate and 2-oxoglutarate (Eq. 14-24). [Pg.737]

Formation of pyruvate. The conversion of glucose to pyruvate requires ten enzymes (Fig. 17-7), and the sequence can be divided into four stages preparation for chain cleavage (reactions 1-3), cleavage and equilibration of triose phosphates (reactions 4 and 5), oxidative generation of ATP (reactions 6 and 7), and conversion of 3-phosphoglycerate to pyruvate (reactions 8-10). [Pg.960]


See other pages where Enzymes phosphate reactions is mentioned: [Pg.63]    [Pg.63]    [Pg.348]    [Pg.1132]    [Pg.258]    [Pg.137]    [Pg.5]    [Pg.156]    [Pg.98]    [Pg.300]    [Pg.150]    [Pg.85]    [Pg.277]    [Pg.351]    [Pg.489]    [Pg.31]    [Pg.46]    [Pg.66]    [Pg.97]    [Pg.143]    [Pg.371]    [Pg.371]    [Pg.382]    [Pg.615]    [Pg.620]    [Pg.434]    [Pg.88]    [Pg.164]    [Pg.256]    [Pg.297]    [Pg.67]    [Pg.192]    [Pg.500]    [Pg.573]    [Pg.36]    [Pg.1376]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Enzymes that Catalyze Reactions Involving Phosphate

Phosphates enzymic reactions

Phosphation reactions

Pyridoxal phosphate enzymes 3-replacement reactions

Pyridoxal phosphate enzymes decarboxylase reactions

Pyridoxal phosphate enzymes reaction types

Pyridoxal phosphate enzymes reactions

Pyridoxal phosphate enzymes transaminase reactions

Transamination Reactions of Other Pyridoxal Phosphate Enzymes

© 2024 chempedia.info