Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entropy theory nonequilibrium steady state systems

It is most remarkable that the entropy production in a nonequilibrium steady state is directly related to the time asymmetry in the dynamical randomness of nonequilibrium fluctuations. The entropy production turns out to be the difference in the amounts of temporal disorder between the backward and forward paths or histories. In nonequilibrium steady states, the temporal disorder of the time reversals is larger than the temporal disorder h of the paths themselves. This is expressed by the principle of temporal ordering, according to which the typical paths are more ordered than their corresponding time reversals in nonequilibrium steady states. This principle is proved with nonequilibrium statistical mechanics and is a corollary of the second law of thermodynamics. Temporal ordering is possible out of equilibrium because of the increase of spatial disorder. There is thus no contradiction with Boltzmann s interpretation of the second law. Contrary to Boltzmann s interpretation, which deals with disorder in space at a fixed time, the principle of temporal ordering is concerned by order or disorder along the time axis, in the sequence of pictures of the nonequilibrium process filmed as a movie. The emphasis of the dynamical aspects is a recent trend that finds its roots in Shannon s information theory and modem dynamical systems theory. This can explain why we had to wait the last decade before these dynamical aspects of the second law were discovered. [Pg.129]

In Sections IVA, VA, and VI the nonequilibrium probability distribution is given in phase space for steady-state thermodynamic flows, mechanical work, and quantum systems, respectively. (The second entropy derived in Section II gives the probability of fluctuations in macrostates, and as such it represents the nonequilibrium analogue of thermodynamic fluctuation theory.) The present phase space distribution differs from the Yamada-Kawasaki distribution in that... [Pg.7]

The Gibbs stability theory condition may be restrictive for nonequilibrium systems. For example, the differential form of Fourier s law together with the boundary conditions describe the evolution of heat conduction, and the stability theory at equilibrium refers to the asymptotic state reached after a sufficiently long time however, there exists no thermodynamic potential with a minimum at steady state. Therefore, a stability theory based on the entropy production is more general. [Pg.604]

In the linear nonequilibrium thermodynamics theory, the stability of stationary states is associated with Prigogine s principle of minimum entropy production. Prigogine s principle is restricted to stationary states close to global thermodynamic equilibrium where the entropy production serves as a Lyapunov function. The principle is not applicable to the stability of continuous reaction systems involving stable and unstable steady states far from global equilibrium. [Pg.612]

The stability of transport and rate systems is studied either by nonequilibrium thermodynamics or by conventional rate theory. In the latter, the analysis is based on Poincare s variational equations and Lyapunov functions. We may investigate the stability of a steady state by analyzing the response of a reaction system to small disturbances around the stationary state variables. The disturbed quantities are replaced by linear combinations of their undisturbed stationary values. In nonequilibrium thermodynamics theory, the stability of stationary states is associated with Progogine s principle of minimum entropy production. Stable states are characterized by the lowest value of the entropy production in irreversible processes. The applicability of Prigogine s principle of minimum entropy production is restricted to stationary states close to global thermodynamic equilibrium. It is not applicable to the stability of continuous reaction systems involving stable and unstable steady states far from global equilibrium. The steady-state deviation of entropy production serves as a Lyapunov function. [Pg.632]


See other pages where Entropy theory nonequilibrium steady state systems is mentioned: [Pg.73]   
See also in sourсe #XX -- [ Pg.53 , Pg.54 ]




SEARCH



Entropy theory

Nonequilibrium

Nonequilibrium steady state

Nonequilibrium steady state systems

Nonequilibrium systems

Nonequilibrium theory

Steady-state system

Steady-state theory

System theory

Systemic theory

© 2024 chempedia.info