Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent entropy

The entropy of a solution is itself a composite quantity comprising (i) a part depending only on tire amount of solvent and solute species, and independent from what tliey are, and (ii) a part characteristic of tire actual species (A, B,. ..) involved (equal to zero for ideal solutions). These two parts have been denoted respectively cratic and unitary by Gurney [55]. At extreme dilution, (ii) becomes more or less negligible, and only tire cratic tenn remains, whose contribution to tire free energy of mixing is... [Pg.2824]

Water-soluble globular proteins usually have an interior composed almost entirely of non polar, hydrophobic amino acids such as phenylalanine, tryptophan, valine and leucine witl polar and charged amino acids such as lysine and arginine located on the surface of thi molecule. This packing of hydrophobic residues is a consequence of the hydrophobic effeci which is the most important factor that contributes to protein stability. The molecula basis for the hydrophobic effect continues to be the subject of some debate but is general considered to be entropic in origin. Moreover, it is the entropy change of the solvent that i... [Pg.531]

Unfortunately, the number of mechanistic studies in this field stands in no proportion to its versatility" . Thermodynamic analysis revealed that the beneficial effect of Lewis-acids on the rate of the Diels-Alder reaction can be primarily ascribed to a reduction of the enthalpy of activation ( AAH = 30-50 kJ/mole) leaving the activation entropy essentially unchanged (TAAS = 0-10 kJ/mol)" . Solvent effects on Lewis-acid catalysed Diels-Alder reactions have received very little attention. A change in solvent affects mainly the coordination step rather than the actual Diels-Alder reaction. Donating solvents severely impede catalysis . This observation justifies the widespread use of inert solvents such as dichloromethane and chloroform for synthetic applications of Lewis-acid catalysed Diels-Alder reactions. [Pg.13]

What distinguishes water from ordinary organic solvents and justifies the term hydrophobic interaction is the molecular origin of the effect, being entropy driven in pure water at room temperature and resulting primarily from the strong water-water interactions. [Pg.18]

We concluded the last section with the observation that a polymer solution is expected to be nonideal on the grounds of entropy considerations alone. A nonzero value for AH would exacerbate the situation even further. We therefore begin our discussion of this problem by assuming a polymer-solvent system which shows athermal mixing. In the next section we shall extend the theory to include systems for which AH 9 0. The theory we shall examine in the next few sections was developed independently by Flory and Huggins and is known as the Flory-Huggins theory. [Pg.513]

Consider the above result for the case of N2 = 0, that is, for pure solvent The expression in item (6) is proportional to the entropy of the pure solvent Si = 0. [Pg.516]

Since the 0 s are fractions, the logarithms in Eq. (8.38) are less than unity and AGj is negative for all concentrations. In the case of athermal mixtures entropy considerations alone are sufficient to account for polymer-solvent miscibility at all concentrations. Exactly the same is true for ideal solutions. As a matter of fact, it is possible to regard the expressions for AS and AGj for ideal solutions as special cases of Eqs. (8.37) and (8.38) for the situation where n happens to equal unity. The following example compares values for ASj for ideal and Flory-Huggins solutions to examine quantitatively the effect of variations in n on the entropy of mixing. [Pg.517]

Bond dissociation energies (BDEs) for the oxygen—oxygen and oxygen— hydrogen bonds are 167—184 kj/mol (40.0—44.0 kcal/mol) and 375 kj/mol (89.6 kcal/mol), respectively (10,45). Heats of formation, entropies, andheat capacities of hydroperoxides have been summarized (9). Hydroperoxides exist as hydrogen-bonded dimers in nonpolar solvents and readily form hydrogen-bonded associations with ethers, alcohols, amines, ketones, sulfoxides, and carboxyhc acids (46). Other physical properties of hydroperoxides have been reported (46). [Pg.103]

More fundamental treatments of polymer solubihty go back to the lattice theory developed independentiy and almost simultaneously by Flory (13) and Huggins (14) in 1942. By imagining the solvent molecules and polymer chain segments to be distributed on a lattice, they statistically evaluated the entropy of solution. The enthalpy of solution was characterized by the Flory-Huggins interaction parameter, which is related to solubihty parameters by equation 5. For high molecular weight polymers in monomeric solvents, the Flory-Huggins solubihty criterion is X A 0.5. [Pg.435]

The actual amount and stmcture of this "bound" water has been the subject of debate (83), but the key factor is that in water, PVP and related polymers are water stmcture organi2ers, which is a lower entropy situation (84). Therefore, it is not unexpected that water would play a significant role in the homopolymeri2ation of VP, because the polymer and its reactive terminus are more rigidly constrained in this solvent and termination k is reduced... [Pg.531]

The separation of Hquid crystals as the concentration of ceUulose increases above a critical value (30%) is mosdy because of the higher combinatorial entropy of mixing of the conformationaHy extended ceUulosic chains in the ordered phase. The critical concentration depends on solvent and temperature, and has been estimated from the polymer chain conformation using lattice and virial theories of nematic ordering (102—107). The side-chain substituents govern solubiHty, and if sufficiently bulky and flexible can yield a thermotropic mesophase in an accessible temperature range. AcetoxypropylceUulose [96420-45-8], prepared by acetylating HPC, was the first reported thermotropic ceUulosic (108), and numerous other heavily substituted esters and ethers of hydroxyalkyl ceUuloses also form equUibrium chiral nematic phases, even at ambient temperatures. [Pg.243]

The solvophobic model of Hquid-phase nonideaHty takes into account solute—solvent interactions on the molecular level. In this view, all dissolved molecules expose microsurface area to the surrounding solvent and are acted on by the so-called solvophobic forces (41). These forces, which involve both enthalpy and entropy effects, are described generally by a branch of solution thermodynamics known as solvophobic theory. This general solution interaction approach takes into account the effect of the solvent on partitioning by considering two hypothetical steps. Eirst, cavities in the solvent must be created to contain the partitioned species. Second, the partitioned species is placed in the cavities, where interactions can occur with the surrounding solvent. The idea of solvophobic forces has been used to estimate such diverse physical properties as absorbabiHty, Henry s constant, and aqueous solubiHty (41—44). A principal drawback is calculational complexity and difficulty of finding values for the model input parameters. [Pg.236]


See other pages where Solvent entropy is mentioned: [Pg.183]    [Pg.294]    [Pg.11]    [Pg.2222]    [Pg.183]    [Pg.294]    [Pg.11]    [Pg.2222]    [Pg.399]    [Pg.403]    [Pg.2628]    [Pg.2628]    [Pg.2841]    [Pg.79]    [Pg.70]    [Pg.137]    [Pg.532]    [Pg.625]    [Pg.17]    [Pg.26]    [Pg.31]    [Pg.410]    [Pg.803]    [Pg.524]    [Pg.556]    [Pg.566]    [Pg.362]    [Pg.435]    [Pg.435]    [Pg.545]    [Pg.196]    [Pg.264]    [Pg.386]    [Pg.386]    [Pg.343]    [Pg.169]    [Pg.458]    [Pg.148]    [Pg.149]    [Pg.38]    [Pg.64]    [Pg.2000]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Solvent effects on entropy of activation

© 2024 chempedia.info