Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ensemble potential

As we have seen in the previous sections the currently existing exchange-correlation potentials do not always perform well for ensemble-states. Recently, a simple Xa ensemble potential has been proposed [15]. In this section this potential is discussed and results for other atoms are presented. The form of the Xa ensemble exchange potential is... [Pg.167]

The grand canonical ensemble is a set of systems each with the same volume V, the same temperature T and the same chemical potential p (or if there is more than one substance present, the same set of p. s). This corresponds to a set of systems separated by diathennic and penneable walls and allowed to equilibrate. In classical thennodynamics, the appropriate fimction for fixed p, V, and Tis the productpV(see equation (A2.1.3 7)1 and statistical mechanics relates pV directly to the grand canonical partition function... [Pg.375]

In a canonical ensemble, the system is held at fixed (V, T, N). In a grand canonical ensemble the (V, T p) of the system are fixed. The change from to p as an independent variable is made by a Legendre transfomiation in which the dependent variable, the Flelmlioltz free energy, is replaced by the grand potential... [Pg.418]

This is the same as that in the canonical ensemble. All the thennodynamic results for a classical ideal gas tlien follow, as in section A2.2.4.4. In particular, since from equation (A2.2.158) the chemical potential is related to which was obtained m equation (A2.2.88). one obtains... [Pg.428]

A direct and transparent derivation of the second virial coefficient follows from the canonical ensemble. To make the notation and argument simpler, we first assume pairwise additivity of the total potential with no angular contribution. The extension to angularly-mdependent non-pairwise additive potentials is straightforward. The total potential... [Pg.449]

The correlation functions provide an alternate route to the equilibrium properties of classical fluids. In particular, the two-particle correlation fimction of a system with a pairwise additive potential detemrines all of its themiodynamic properties. It also detemrines the compressibility of systems witir even more complex tliree-body and higher-order interactions. The pair correlation fiinctions are easier to approximate than the PFs to which they are related they can also be obtained, in principle, from x-ray or neutron diffraction experiments. This provides a useful perspective of fluid stmcture, and enables Hamiltonian models and approximations for the equilibrium stmcture of fluids and solutions to be tested by direct comparison with the experimentally detennined correlation fiinctions. We discuss the basic relations for the correlation fiinctions in the canonical and grand canonical ensembles before considering applications to model systems. [Pg.465]

The grand canonical ensemble is a collection of open systems of given chemical potential p, volume V and temperature T, in which the number of particles or the density in each system can fluctuate. It leads to an important expression for the compressibility Kj, of a one-component fluid ... [Pg.475]

The bulk of the infomiation about anhannonicity has come from classical mechanical calculations. As described above, the aidiannonic RRKM rate constant for an analytic potential energy fiinction may be detemiined from either equation (A3.12.4) [13] or equation (A3.12.24) [46] by sampling a microcanonical ensemble. This rate constant and the one calculated from the hamionic frequencies for the analytic potential give the aidiannonic correctiony j ( , J) in equation (A3.12.41). The transition state s aidiannonic classical sum of states is found from the phase space integral... [Pg.1021]

The canonical ensemble corresponds to a system of fixed and V, able to exchange energy with a thennal bath at temperature T, which represents the effects of the surroundings. The thennodynamic potential is the Helmholtz free energy, and it is related to the partition fiinction follows ... [Pg.2246]

Since H=K. + V, the canonical ensemble partition fiinction factorizes into ideal gas and excess parts, and as a consequence most averages of interest may be split into corresponding ideal and excess components, which sum to give the total. In MC simulations, we frequently calculate just the excess or configurational parts in this case, y consists just of the atomic coordinates, not the momenta, and the appropriate expressions are obtained from equation b3.3.2 by replacing fby the potential energy V. The ideal gas contributions are usually easily calculated from exact... [Pg.2246]

The grand canonical ensemble corresponds to a system whose number of particles and energy can fluctuate, in exchange with its surroundings at specified p VT. The relevant themiodynamic quantity is the grand potential n = A - p A. The configurational distribution is conveniently written... [Pg.2260]

Another triek is applieable to, say, a two-eomponent mixture, in whieh one of the speeies. A, is smaller than the other, B. From figure B3.3.8 for hard spheres, we ean see that A need not be particularly small in order for the test partiele insertion probability to elimb to aeeeptable levels, even when insertion of B would almost always fail. In these eireumstanees, the ehemieal potential of A may be detemiined direetly, while that of B is evaluated indireetly, relative to that of A. The related semi-grand ensemble has been diseussed in some detail by Kofke and Glandt [110]. [Pg.2264]

Swope W C and Andersen H C 1995 A computer simulation method for the calculation of chemical potentials of liquids and solids using the bicanonical ensemble J. Chem. Phys. f02 2851-63... [Pg.2284]

Consider the generalized distribution Pq(r ) to be generated in the Gibbs-Boltzmann canonical ensemble (9 = 1) by an effective potential W,(r /3) which is defined... [Pg.207]

Z-matriccs arc commonly used as input to quantum mechanical ab initio and serai-empirical) calculations as they properly describe the spatial arrangement of the atoms of a molecule. Note that there is no explicit information on the connectivity present in the Z-matrix, as there is, c.g., in a connection table, but quantum mechanics derives the bonding and non-bonding intramolecular interactions from the molecular electronic wavefunction, starting from atomic wavefiinctions and a crude 3D structure. In contrast to that, most of the molecular mechanics packages require the initial molecular geometry as 3D Cartesian coordinates plus the connection table, as they have to assign appropriate force constants and potentials to each atom and each bond in order to relax and optimi-/e the molecular structure. Furthermore, Cartesian coordinates are preferable to internal coordinates if the spatial situations of ensembles of different molecules have to be compared. Of course, both representations are interconvertible. [Pg.94]


See other pages where Ensemble potential is mentioned: [Pg.162]    [Pg.162]    [Pg.188]    [Pg.418]    [Pg.448]    [Pg.832]    [Pg.848]    [Pg.1023]    [Pg.1032]    [Pg.1781]    [Pg.2241]    [Pg.2248]    [Pg.2259]    [Pg.2269]    [Pg.2270]    [Pg.2456]    [Pg.2860]    [Pg.2912]    [Pg.264]    [Pg.293]    [Pg.40]    [Pg.64]    [Pg.90]    [Pg.92]    [Pg.160]    [Pg.207]    [Pg.213]    [Pg.105]    [Pg.367]    [Pg.367]    [Pg.370]    [Pg.71]   


SEARCH



© 2024 chempedia.info