Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates stereoisomers

Fout-cenieted addition of RCu to an enone was widely discussed in tlie 1960s iSclieme 10.3a) [51-53], wb de discussions on six-centered ttansition states have continued imt d recent times iSclieme 10.3b) [54], Hiese meclianisms do not, bowevet, explain tbe fotciiation of E/Z mixtures of enolate stereoisomers [20, 55] and must now be considered obsolete. [Pg.318]

Van Horn and Masamune have shown that it is possible to prepare either boryl enolate stereoisomer from the same ketone by changing the steric demand of the dialkylboryl triflate (Scheme Evans et al. also carried out independent studies on the stereochemical course of these aldol reactions and demonstrated that dialkylboryl enolates were kinetically stable even at elevated temperatures. The results obtained from the Evans group also established that exceptionally high levels of aldol dia-stereoselection are governed by the stereochemistry of the dialkylboryl enolates (Table 1). [Pg.245]

Van Horn and Masamune have shown that it is possible to prepare either boryl enolate stereoisomer from the same ketone by changing the steric demand of the dialkylboryl triflate (Scheme 17).20e... [Pg.245]

Here we will illustrate the method using a single example. The aldol reaction between an enol boronate and an aldehyde can lead to four possible stereoisomers (Figure 11.32). Many of these reactions proceed with a high degree of diastereoselectivity (i.e. syn anti) and/or enantioselectivity (syn-l syn-Tl and anti-l anti-lT). Bernardi, Capelli, Gennari,... [Pg.626]

A highly successful route to stereoisomers of substituted 3-cyclohexene-l-carboxylates runs via Ireland-Claisen rearrangements of silyl enolates of oj-vinyl lactones. The rearrangement proceeds stereospeaifically through the only possible boat-like transition state, in which the connecting carbon atoms come close enough (S. Danishefsky, 1980 see also section 4.8.3, M. Nakatsuka, 1990). [Pg.87]

Because the configuration at C-2 is lost on enolization, the enediol intermediate can revert either to D-glucose or to D-mannose. Two stereoisomers that have multiple chirality centers but differ in configuration at only one of them are refened to as... [Pg.1056]

Enolates react with alkyl halides to form a new CC bond. A mixture of stereoisomers may result. For example, each of the reactions shown below gives two products, with the major product constituting > 90% of the mixture. [Pg.169]

Schemes 28 and 29 illustrate Curran s synthesis of ( )-hirsutene [( )-1]. Luche reduction58 of 2-methylcyclopentenone (137), followed by acetylation of the resulting allylic alcohol, furnishes allylic acetate 138. Although only one allylic acetate stereoisomer is illustrated in Scheme 28, compound 138 is, of course, produced in racemic form. By way of the powerful Ireland ester enolate Clai-sen rearrangement,59 compound 138 can be transformed to y,S-unsaturated tm-butyldimethylsilyl ester 140 via the silyl ketene acetal intermediate 139. In 140, the silyl ester function and the methyl-substituted ring double bond occupy neighboring regions of space, a circumstance that favors a phenylselenolactonization reac-... Schemes 28 and 29 illustrate Curran s synthesis of ( )-hirsutene [( )-1]. Luche reduction58 of 2-methylcyclopentenone (137), followed by acetylation of the resulting allylic alcohol, furnishes allylic acetate 138. Although only one allylic acetate stereoisomer is illustrated in Scheme 28, compound 138 is, of course, produced in racemic form. By way of the powerful Ireland ester enolate Clai-sen rearrangement,59 compound 138 can be transformed to y,S-unsaturated tm-butyldimethylsilyl ester 140 via the silyl ketene acetal intermediate 139. In 140, the silyl ester function and the methyl-substituted ring double bond occupy neighboring regions of space, a circumstance that favors a phenylselenolactonization reac-...
These examples indicate that the (Z)-syn,(E)-antt correlation should be considered to be a rule with many exceptions. Two explanations may be given in order to rationalize the manifold stereochemical results in aldol additions. Firstly, it seems plausible that the many different reaction conditions and starting materials (e.g., various types of enolates, counterions, etc.) may cause the aldol addition to follow different reaction mechanisms, so that different types of transition states are involved. Secondly, in a single type of transition state model, the reactants may have different orientations to each other, so that the formation of different stereoisomers may result even for one and the same transition state model. [Pg.458]

When the related saccharin derived sultam (R)-29 is converted into the (Z)-boron enolate and subsequently treated with aldehydes,. vy -diastereomers 30 result almost exclusively. Thus, the diasteromeric ratios, defined as the ratio of the major product to the sum of all other stereoisomers, surpass 99 1. Hydroperoxide assisted saponification followed by esterification provides carboxylic esters 31 with recovery of sultam 32106a. [Pg.503]

In a similar way, the lithium enolate derived from (2f ,55)-2-tert-butyl-5-methyl-l,3-thioxolan-4-one leads to the predominant formation of one diastereomer when treated with cyclo-hexenone. The diastereomeric ratio is 75 25 (main product/sum of the other stereoisomers)114. [Pg.511]

Allylic radical are relatively stable, and the pentadienyl radical is particularly stable. In such molecules, (E), E), (E),(Z), and (Z),(Z) stereoisomers can form. It has been calculated that (Z),(Z)-pentadienyl radical is 5.6 kcal mol less stable than the ( ),( )-pentadienyl radical. ° It is noted that vinyl radical have (E) and (Z) forms and the inversion barrier from one to the other increases as the electronegativity of substituents increase. Enolate radicals are also known. ... [Pg.242]

The reactions with preformed enol derivatives provide a way to control the stereoselectivity of the aldol reaction. As with the Michael reaction (15-16), the aldol reaction creates two new chiral centers, and, in the most general case, there are four stereoisomers of the aldol product, which can be represented as... [Pg.1221]

For enolates with additional functional groups, chelation may influence stereoselectivity. Chelation-controlled alkylation has been examined in the context of the synthesis of a polyol lactone (-)-discodermolide. The lithium enolate 4 reacts with the allylic iodide 5 in a hexane THF solvent mixture to give a 6 1 ratio favoring the desired stereoisomer. Use of the sodium enolate gives the opposite stereoselectivity, presumably because of the loss of chelation.61 The solvent seems to be quite important in promoting chelation control. [Pg.28]

Ketone imine anions can also be alkylated. The prediction of the regioselectivity of lithioenamine formation is somewhat more complex than for the case of kinetic ketone enolate formation. One of the complicating factors is that there are two imine stereoisomers, each of which can give rise to two regioisomeric imine anions. The isomers in which the nitrogen substituent R is syn to the double bond are the more stable.114... [Pg.50]

The first element of stereocontrol in aldol addition reactions of ketone enolates is the enolate structure. Most enolates can exist as two stereoisomers. In Section 1.1.2, we discussed the factors that influence enolate composition. The enolate formed from 2,2-dimethyl-3-pentanone under kinetically controlled conditions is the Z-isomer.5 When it reacts with benzaldehyde only the syn aldol is formed.4 The product stereochemistry is correctly predicted if the TS has a conformation with the phenyl substituent in an equatorial position. [Pg.68]

Boron enolates can be prepared by reaction of the ketone with a dialkylboron trifluoromethanesulfonate (triflate) and a tertiary amine.16 Use of boron triflates and a bulky amine favors the Z-enolate. The resulting aldol products are predominantly the syn stereoisomers. [Pg.72]

Z-Boron enolates can also be obtained from silyl enol ethers by reaction with the bromoborane derived from 9-BBN (9-borabicyclo[3.3.1]nonane). This method is necessary for ketones such as 2,2-dimethyl-3-pentanone, which give E-boron enolates by other methods. The Z-stereoisomer is formed from either the Z- or E-silyl enol ether.20... [Pg.73]

Stereochemical Control by the Aldehyde. A chiral center in an aldehyde can influence the direction of approach by an enolate or other nucleophile. This facial selectivity is in addition to the simple syn, anti diastereoselectivity so that if either the aldehyde or enolate contains a stereocenter, four stereoisomers are possible. There are four possible chairlike TSs, of which two lead to syn product from the Z-enolate and two to anti product from the A-enolate. The two members of each pair differ in the facial approach to the aldehyde and give products of opposite configuration at both of the newly formed stereocenters. If the substituted aldehyde is racemic, the enantiomeric products will be formed, making a total of eight stereoisomers possible. [Pg.89]

Chelation can also be involved in double stereodifferentiation. The lithium enolate of the ketone 7 reacts selectively with the chiral aldehyde 6 to give a single stereoisomer.116 The enolate is thought to be chelated, blocking one face and leading to the observed product. [Pg.109]

There can be more than two stereocenters, in which case there are additional combinations. For example with three stereocenters, there will be one fully matched set, one fully mismatched set, and two partially matched sets. In the latter two, one of the factors may dominate the others. For example, the ketone 8 and the four stereoisomers of the aldehyde 9 have been examined.117 Both the E-boron and the Z-titanium enolates were studied. The results are shown below. [Pg.109]

Entry 4 has siloxy substituents in both the (titanium) enolate and the aldehyde. The TBDPSO group in the aldehyde is in the large Felkin position, that is, perpendicular to the carbonyl group.121 The TBDMS group in the enolate is nonchelated but exerts a steric effect that governs facial selectivity.122 In this particular case, the two effects are matched and a single stereoisomer is observed. [Pg.113]

These oxazolidinones can be acylated and converted to the lithium, boron, tin, or titanium enolates by the same methods applicable to ketones and esters. For example, when they are converted to boron enolates using di-n-butylboron triflate and triethyl-amine, the enolates are the Z-stereoisomers.125... [Pg.114]

The ester 7-1 gives alternative stereoisomers when subjected to Claisen rearrangement as the lithium enolate or as the silyl ketene acetal. Analyze the respective transition structures and develop a rationale to explain these results. [Pg.609]

The synthesis in Scheme 13.13 leads diastereospecifically to the erythro stereoisomer. An intramolecular enolate alkylation in Step B gave a bicyclic intermediate. The relative configuration of C(4) and C(7) was established by the hydrogenation in Step C. The hydrogen is added from the less hindered exo face of the bicyclic enone. This reaction is an example of the use of geometric constraints of a ring system to control relative stereochemistry. [Pg.1180]


See other pages where Enolates stereoisomers is mentioned: [Pg.100]    [Pg.100]    [Pg.100]    [Pg.100]    [Pg.100]    [Pg.100]    [Pg.627]    [Pg.60]    [Pg.438]    [Pg.439]    [Pg.307]    [Pg.296]    [Pg.34]    [Pg.76]    [Pg.164]    [Pg.241]    [Pg.263]    [Pg.453]    [Pg.510]    [Pg.73]    [Pg.1222]    [Pg.232]    [Pg.11]    [Pg.14]    [Pg.1203]   


SEARCH



Stereoisomer

Stereoisomers

© 2024 chempedia.info