Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic additions enolates

Aldol and Claisen reactions will test your ability to keep bonds and atoms straight. All the chemistry found in this chapter has been introduced elsewhere (e.g., enol and enolate nucleophiles, addition-elimination, E2 reactions). The challenge is to apply these to this more comphcated enviromnent. One key, as indicated below, is to count your carbons at each step in a synthesis or mechanism. [Pg.480]

In the preceding chapter you learned that nucleophilic addition to the carbonyl group IS one of the fundamental reaction types of organic chemistry In addition to its own reactivity a carbonyl group can affect the chemical properties of aldehydes and ketones m other ways Aldehydes and ketones having at least one hydrogen on a carbon next to the carbonyl are m equilibrium with their enol isomers... [Pg.755]

Aldehyde Enolate Alkoxide ion from nucleophilic addition... [Pg.770]

Indeed formaldehyde is so reactive toward nucleophilic addition that it suppresses the self condensation of the other component by reacting rapidly with any enolate present Aromatic aldehydes cannot form enolates and a large number of mixed aldol con densations have been carried out m which an aromatic aldehyde reacts with an enolate... [Pg.775]

With certain other nucleophiles addition takes place at the carbon-carbon double bond rather than at the carbonyl group Such reactions proceed via enol intermediates and are described as conjugate addition ox 1 4 addition reactions... [Pg.777]

Ordinarily nucleophilic addition to the carbon-carbon double bond of an alkene is very rare It occurs with a p unsaturated carbonyl compounds because the carbanion that results IS an enolate which is more stable than a simple alkyl anion... [Pg.777]

A synthetically useful reaction known as the Michael reaction, or Michael addition, involves nucleophilic addition of carbanions to a p unsaturated ketones The most common types of carbanions used are enolate 10ns derived from p diketones These enolates are weak bases (Section 18 6) and react with a p unsaturated ketones by conjugate addition... [Pg.779]

A reaction of great synthetic val ue for carbon-carbon bond for mation Nucleophilic addition of an enolate ion to a carbonyl group followed by dehydration of the 3 hydroxy aldehyde yields an a p unsaturated aldehyde... [Pg.783]

Esterification of carboxylic acids involves nucleophilic addition to the carbonyl group as a key step In this respect the carbonyl group of a carboxylic acid resembles that of an aldehyde or a ketone Do carboxylic acids resemble aldehydes and ketones m other ways Do they for example form enols and can they be halogenated at their a carbon atom via an enol m the way that aldehydes and ketones can ... [Pg.815]

Step 2 Nucleophilic addition of the ester enolate to the carbonyl group of the neutral ester The product is the anionic form of the tetrahedral intermediate... [Pg.888]

We already know what happens when simple esters are treated with alkoxide bases— they undergo the Claisen condensation (Section 211) Simple esters have s of approximately 22 and give only a small amount of enolate when treated with alkoxide bases The small amount of enolate that is formed reacts by nucleophilic addition to the carbonyl group of the ester... [Pg.903]

Alditol (Section 25 18) The polyol obtained on reduction of the carbonyl group of a carbohydrate Aldol addition (Section 18 9) Nucleophilic addition of an aldehyde or ketone enolate to the carbonyl group of an aide hyde or a ketone The most typical case involves two mole cules of an aldehyde and is usually catalyzed by bases... [Pg.1275]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

Because the pK s of the aldehyde and water are similar, the solution contains significant quantities of both the aldehyde and its enolate. Moreover, their reactivities are complementary. The aldehyde is capable of undergoing nucleophilic addition to its carbonyl group, and the enolate is a nucleophile capable of adding to a carbonyl group. And as shown in Figure 18.4, this is exactly what happens. The product of this step is an alkoxide, which abstracts a proton from the solvent (usually water or ethanol) to yield a (3-hydroxy aldehyde. A compound of this type is known as an aldol because it contains both an aldehyde function and a hydroxyl group (aid + ol = aldol). The reaction is called aldol addition. [Pg.769]

Indeed, fonnaldehyde is so reactive toward nucleophilic addition that it suppresses the self-condensation of the other component by reacting rapidly with any enolate present. [Pg.775]

The next step is the nucleophilic addition of the enolate anion 5 to the carbonyl group of another, non-enolized, aldehyde molecule 2. The product which is obtained after workup is a /3-hydroxy aldehyde or ketone 3 ... [Pg.4]

There have been extensive investigations on the reaction mechanism. In most cases the reaction proceeds via initial nucleophilic addition of ammonia 2 to formaldehyde 1 to give adduct 5, which is converted into an iminium ion species 6 (note that a resonance structure—an aminocarbenium ion can be formulated) through protonation and subsequent loss of water. The iminium ion species 6 then reacts with the enol 7 of the CH-acidic substrate by overall loss of a proton ... [Pg.194]

Although the carbonyl condensation reaction appears different from the three processes already discussed, it s actually quite similar. A carbonyl condensation reaction is simply a combination of a nucleophilic addition step and an -substitution step. The initially formed enolate ion of one acetaldehyde molecule acts as a nucleophile and adds to the carbonyl group of another acetaldehyde molecule, as shown in Figure 5. [Pg.693]

Base catalyzed nitrile hydrolysis involves nucleophilic addition of hydroxide ion to the polar C N bond to give an imine anion in a process similar to nucleophilic addition to a polar C=0 bond to give an alkoxide anion. Protonation then gives a hydroxy imine, which tautomerizes (Section 8.4) to an amide in a step similar to the tautomerization of an enol to a ketone. The mechanism is shown in Figure 20.4. [Pg.768]

Both the malonic ester synthesis and the acetoacetic ester synthesis are easy to cany out because they involve unusually acidic dicarbonyi compounds. As a result, relatively mild bases such as sodium ethoxide in ethanol as solvent can be used to prepare the necessary enolate ions. Alternatively, however, it s also possible in many cases to directly alkylate the a position of monocarbonyl compounds. A strong, stericaliy hindered base such as LDA is needed so that complete conversion to the enolate ion takes place rather than a nucleophilic addition, and a nonprotic solvent must be used. [Pg.861]

We ve now studied three of the four general kinds of carbonyl-group reactions and have seen two general kinds of behavior. In nucleophilic addition and nucleophilic acyl substitution reactions, a carbonyl compound behaves as an electrophile. In -substitution reactions, however, a carbonyl compound behaves as a nucleophile when it is converted into its enol or enolate ion. In the carbonyl condensation reaction that we ll study in this chapter, the carbonyl compound behaves both as an electrophile and as a nucleophile. [Pg.877]

Carbonyl condensation reactions take place between two carbonyl partners and involve a combination of nucleophilic addition and -substitution steps. One partner is converted into an enolate-ion nucleophile and adds to the... [Pg.877]

Aldol reactions, Like all carbonyl condensations, occur by nucleophilic addition of the enolate ion of the donor molecule to the carbonyl group of the acceptor molecule. The resultant tetrahedral intermediate is then protonated to give an alcohol product (Figure 23.2). The reverse process occurs in exactty the opposite manner base abstracts the -OH hydrogen from the aldol to yield a /3-keto alkoxide ion, which cleaves to give one molecule of enolate ion and one molecule of neutral carbonyl compound. [Pg.879]

The enolate ion attacks a second aldehyde molecule in a nucleophilic addition reaction to give a tetrahedral alkoxide ion intermediate. [Pg.880]


See other pages where Nucleophilic additions enolates is mentioned: [Pg.769]    [Pg.777]    [Pg.893]    [Pg.224]    [Pg.777]    [Pg.887]    [Pg.893]    [Pg.496]    [Pg.259]   
See also in sourсe #XX -- [ Pg.652 , Pg.653 , Pg.654 , Pg.655 ]




SEARCH



Enolate Additions

Enolate Enol Nucleophiles

Enolate nucleophile

© 2024 chempedia.info