Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate anions malonic ester synthesis

The malonic ester synthesis is similar to the acetoacetic ester synthesis. It begins with deprotonation of diethyl malonate (pKa = 11) to produce an enolate anion that is the synthetic equivalent of the enolate anion derived from acetic acid ... [Pg.869]

In both the acetoacetic ester synthesis and the malonic ester synthesis, it is possible to add two different alkyl groups to the a-carbon in sequential steps. First the enolate ion is generated by reaction with sodium ethoxide and alkylated. Then the enolate ion of the alkylated product is generated by reaction with a second equivalent of sodium ethoxide, and that anion is alkylated with another alkyl halide. An example is provided by the following equation ... [Pg.870]

Many alkylation and acylation reactions are most effective using anions of /3-dicarbonyl compounds that can be completely deprotonated and converted to their enolate ions by common bases such as alkoxide ions. The malonic ester synthesis and the acetoacetic ester synthesis use the enhanced acidity of the a protons in malonic ester and acetoacetic ester to accomplish alkylations and acylations that are difficult or impossible with simple esters. [Pg.1077]

There are two classical reaction sequences in organic chemistry that rely on enolate alkylation. One is the malonic ester synthesis.61 jjj synthetic example taken from the Clive and Hisaindee synthesis of brevioxime,62 diethyl malonate was treated with a base such as sodium ethoxide, under thermodynamic control conditions. The resulting enolate anion is treated with the indicated alkyl halide to give the alkylated product 81 (in 72% yield).Saponification of 81 to the dicarboxylic acid (82, in 99% yield), was followed by decarboxylation (sec. 2.9.D) and formation of the substituted acid 83, in 94% yield. ... [Pg.733]

A variation of the malonic ester synthetic uses a P-keto ester such as 116. In Section 22.7.1, the Claisen condensation generated P-keto esters via acyl substitution that employed ester enolate anions. When 116 is converted to the enolate anion with NaOEt in ethanol, reaction with benzyl bromide gives the alkylation product 117. When 117 is saponified, the product is P-keto acid 118, and decarboxylation via heating leads to 4-phenyl-2-butanone, 119. This reaction sequence converts a P-keto ester, available from the ester precursors, to a substituted ketone in what is known as the acetoacetic acid synthesis. Both the malonic ester synthesis and the acetoacetic acid synthesis employ enolate alkylation reactions to build larger molecules from smaller ones, and they are quite useful in synthesis. [Pg.1157]

Enolate anion alkylations, acetoacetic ester synthesis and malonic ester synthesis (Sections 19.6 and 19.7). [Pg.1054]

The alkylation reactions of enolate anions of both ketones and esters have been extensively utilized in synthesis. Both very stable enolates, such as those derived from (i-ketoesters, / -diketones, and malonate esters, as well as less stable enolates of monofunctional ketones, esters, nitriles, etc., are reactive. Many aspects of the relationships between reactivity, stereochemistry, and mechanism have been clarified. A starting point for the discussion of these reactions is the structure of the enolates. Because of the delocalized nature of enolates, an electrophile can attack either at oxygen or at carbon. [Pg.435]

Nucleophilic additions to the carbon-carbon double bond of ketene dithioacetal monoxides have been reported [84-86]. These substrates are efficient Michael acceptors in the reaction with enamines, sodium enolates derived from P-dicarbonyl compounds, and lithium enolates from simple ester systems. Hydrolysis of the initiEil products then led to substituted 1,4-dicarbonyl systems [84]. Alternatively, the initial product carbanion could be quenched with electrophiles [85]. For example, the anion derived from dimethyl malonate (86) was added to the ketene dithioacetal monoxide (87). Regioselective electrophilic addition led to the product (88) in 97% overall yield (Scheme 5.28). The application of this methodology to the synthesis of rethrolones [87] and prostaglandin precursors [88] has been demonstrated. Recently, Walkup and Boatman noted the resistance of endocyclic ketene dithioacetals to nucleophilic attack [89]. [Pg.174]

Michael addition is one of the most efficient and effective routes to C-C bond formation[127]. This reaction is widely applied in organic synthesis and several new versions of it have been introduced recently. The commonly employed anionic alkyl synthons for Michael addition are those derived from nitroalkanes, ethyl cyanocarboxylates, and malonates, and their limitations have been largely overcome by newer methodologies. However, the newer approaches are by no means devoid of drawbacks such as long reaction times, modest product yields in many cases, and the requirement for excess nitroalkane. Michael addition reactions of Schiff s bases have long been known to constitute a convenient method for functionalizing a-amino esters at the a position and the ratio of Michael addition to cycloaddition product has been found to depend upon the metal ion employed to chelate the enolate produced upon deprotonation (see below). [Pg.27]


See other pages where Enolate anions malonic ester synthesis is mentioned: [Pg.149]    [Pg.623]    [Pg.734]    [Pg.963]    [Pg.21]    [Pg.2]    [Pg.58]    [Pg.62]    [Pg.4]    [Pg.467]    [Pg.471]    [Pg.224]    [Pg.205]    [Pg.784]    [Pg.347]   
See also in sourсe #XX -- [ Pg.789 , Pg.790 ]




SEARCH



Enol esters

Enol synthesis

Enolate anions

Enolate anions, ester

Enolate synthesis

Enolates anion

Enolates anionic

Enolates enol esters

Ester enolate

Esters enolates

Esters enolization

Esters malonic ester synthesis

Malonate anions

Malonate enolates

Malonate ester anions

Malonate ester synthesis

Malonate esters

Malonic ester enolates

Malonic ester synthesi

Malonic ester synthesis

Malonic ester—

Malonic synthesis

Synthesis anionic

Synthesis enolates

© 2024 chempedia.info