Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers, trimethylsilyl aldol reaction

Trichlorotitanium enolates are formed in variable yield from trimethylsilyl enol ethers and an equivalent of TiCU in dichloromethane at 20-35 C. These highly Lewis acidic preformed enolates then undergo aldol reactions at -70 C to give moderate levels of syn selectivity, as in equation (13). Trichlorotitanium enolates have also been used by Reetz et al. in their studies on diastereofacially selective aldol additions to a-alkoxy aldehydes.Trichlorotitanium enolates are formed in situ in the aldol reaction of aromatic ketones and aldehydes using TiCU and EtsN. ... [Pg.310]

For some condensations with silylated substrates as starting compounds, trimethylsilyl inflate can be used as a catalyst [103, 104, 105] Atypical example of such a reaction is the aldol type condensation of silyl enol ethers and acetals catalyzed by 1-5 mol% of trimethylsilyl inflate [103] (equation 53)... [Pg.961]

By using the directed aldol reaction, unsymmetrical ketones can be made to react regioselectively. After conversion into an appropriate enol derivative (e.g. trimethylsilyl enol ether 8) the ketone reacts at the desired a-carbon. [Pg.6]

For example in the so-called Mukaiyama aldol reaction of an aldehyde R -CHO and a trimethylsilyl enol ether 8, which is catalyzed by Lewis acids, the required asymmetric environment in the carbon-carbon bond forming step can be created by employing an asymmetric Lewis acid L in catalytic amounts. [Pg.9]

Mukaiyama aldol reactions of aldehydes with silyl enol ethers are amongst the most widely used Lewis-acid-mediated or -catalyzed reactions. However, trimethylsilyl triflate is not active enough to promote these reactions,66 and more active silicon-based Lewis acids have been developed. One example is the species generated by mixing trimethylsilyl triflate (or chloride) and B(OTf)3,319,320 for which the formulation R3Si + [B(OTf)4] is suggested by NMR experiments. Only a catalytic amount of this was needed to complete Mukaiyama aldol reactions of... [Pg.430]

More traditional carbon nucleophiles can also be used for an alkylative ring-opening strategy, as exemplified by the titanium tetrachloride promoted reaction of trimethylsilyl enol ethers (82) with ethylene oxide, a protocol which provides aldol products (84) in moderate to good yields <00TL763>. While typical lithium enolates of esters and ketones do not react directly with epoxides, aluminum ester enolates (e.g., 86) can be used quite effectively. This methodology is the subject of a recent review <00T1149>. [Pg.61]

Dialkyl(trimethylsilyl)phosphines undergo 1,4-addition to a,/3-unsaturated ketones and esters to give phosphine-substituted silyl enol ethers and silyl ketene acetals, respectively. A three-component coupling reaction of a silylphosphine, activated alkenes, and aldehydes in the presence of a catalytic amount of GsF affords an aldol product (Scheme 76).290 291... [Pg.780]

On the other hand, the method of Mukaiyama can be succesfully applied to silyl enol ethers of acetic and propionic acid derivatives. For example, perfect stereochemical control is attained in the reaction of silyl enol ether of 5-ethyl propanethioate with several aldehydes including aromatic, aliphatic and a,j5-unsaturated aldehydes, with syir.anti ratios of 100 0 and an ee >98%, provided that a polar solvent, such as propionitrile, and the "slow addition procedure " are used. Thus, a typical experimental procedure is as follows [32e] to a solution of tin(II) triflate (0.08 mmol, 20 mol%) in propionitrile (1 ml) was added (5)-l-methyl-2-[(iV-l-naphthylamino)methyl]pyrrolidine (97b. 0.088 mmol) in propionitrile (1 ml). The mixture was cooled at -78 °C, then a mixture of silyl enol ether of 5-ethyl propanethioate (99, 0.44 mmol) and an aldehyde (0.4 mmol) was slowly added to this solution over a period of 3 h, and the mixture stirred for a further 2 h. After work-up the aldol adduct was isolated as the corresponding trimethylsilyl ether. Most probably the catalytic cycle is that shown in Scheme 9.30. [Pg.267]

Mukiayama aldol reactions between silyl enol ethers and various carbonyl containing compounds is yet another reaction whose stereochemical outcome can be influenced by the presence of bis(oxazoline)-metal complexes. Evans has carried out a great deal of the work in this area. In 1996, Evans and coworkers reported the copper(II)- and zinc(II)-py-box (la-c) catalyzed aldol condensation between benzyloxyacetaldehyde 146 and the trimethylsilyl enol ether [(l-ferf-butylthio)vinyl]oxy trimethylsilane I47. b82,85 Complete conversion to aldol adduct 148 was achieved with enantiomeric excesses up to 96% [using copper(II) triflate]. The use of zinc as the coordination metal led to consistently lower selectivities and longer reaction times, as shown in Table 9.25 (Eig. 9.46). [Pg.565]

TABLE 9.25. MUKAIYAMA ALDOL REACTION OF BENZYLOXYACETALDEHYDE AND A TRIMETHYLSILYL ENOL ETHER"... [Pg.565]

Asymmetric induction in the aldol reaction of enolsilane and metal enolate nucleophiles with yS-substituted aldehydes gives rise to both excellent yields and good diastereoselectivities (equation 128)507. The best diastereoselectivity was obtained using a trimethylsilyl enolate in the presence of boron trifluoride-etherate (92 8 anti. syn). The key step in the synthesis of the N-terminal amino acid analogue of nikkomycin B and Bx (nucleoside peptide antibiotics) has been performed using this type of methodology508. [Pg.741]

Because these asymmetric aldol reactions are ideal methods for constructing (3-hydroxy carbonyl compounds in optically active form, the development of an asymmetric aldol reaction without the use of an organostannane would be advantageous. Yamagishi and coworkers have reported the Mukaiyama aldol reaction using trimethylsilyl enol ethers in the presence of the BINAP-AgPF6 complex to afford the adducts with moderate enantioselectivities (Table 9.9).18 They have also assigned... [Pg.271]

Scheme 9.13. Aldol reaction of an a-diazo trimethylsilyl enol ether. Scheme 9.13. Aldol reaction of an a-diazo trimethylsilyl enol ether.
The other side of the coin is that the S 2 reaction at carbon is not much affected by partial positive [ charge (5+) on the carbon a tom. The Sn2 reaction at silicon is affected by the charge on silicon. The r most electrophilic silicon compounds are the silyl triflates and it is estimated that they react some 108-109 times faster with oxygen nucleophiles than do silyl chlorides. Trimethylsilyl triflate is, in fact, an excellent Lewis acid and can be used to form acetals or silyl enol ethers from carbonyl compounds, and to react these two together in aldol-style reactions. In all three reactions the triflate attacks an oxygen atom. [Pg.1289]

The stereochemical course of several Co2(CO)6-mediated reactions has been studied. For example, although alkynyl aldehydes undergo crossed aldol condensation with trimethylsilyl enol ethers with little stereoselectivity, their hexacarbonyldicobalt derivatives react with moderate to excellent syn diastereoselectivity.96 101 The mechanism behind this selectivity has not been fully elucidated and is complicated by the lluxional nature of the intermediate cations. This stereoselective reaction has been successfully applied to the synthesis of /3-lactam antibiotics.100... [Pg.98]

To determine the aetivated faee of a carbonyl group in an acetylenic aldehyde-CAB 2 complex, an aldol reaction of acetylenic aldehydes with the trimethylsilyl enol ether derived from acetophenone was performed in the presence of 20 mol % 2 under conditions similar to those in the Diels-Alder reaction (Eq. 32). Good enantioselec-tivity was, with the predominant enantiomer corresponding to attack on the re face, as expected. Although it is essential to stress that the results of an aldol reaction cannot be directly used to explain the transition state in cycloaddition, the effective steric shielding of the si face of the coordinated aldehyde is consistent with cycloaddition via the proposed transition-state model 16. [Pg.155]


See other pages where Enol ethers, trimethylsilyl aldol reaction is mentioned: [Pg.3235]    [Pg.3234]    [Pg.82]    [Pg.83]    [Pg.215]    [Pg.458]    [Pg.115]    [Pg.275]    [Pg.432]    [Pg.132]    [Pg.20]    [Pg.396]    [Pg.223]    [Pg.223]    [Pg.340]    [Pg.504]    [Pg.160]    [Pg.547]    [Pg.267]    [Pg.132]    [Pg.239]    [Pg.231]   
See also in sourсe #XX -- [ Pg.2 , Pg.310 ]

See also in sourсe #XX -- [ Pg.310 ]

See also in sourсe #XX -- [ Pg.310 ]

See also in sourсe #XX -- [ Pg.2 , Pg.310 ]

See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Aldol reaction enol ethers

Enolates aldol reactions

Enols aldol reactions

Trimethylsilyl aldol reaction

Trimethylsilyl enol ethers, reactions

Trimethylsilyl enolate

Trimethylsilyl ethers

© 2024 chempedia.info