Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers, enol epoxidation

In a reiterative approach, enol ether epoxidation with DM DO has been coupled with C-C bond fonnation and ring-closing metathesis to provide trans-fused THP ring systems [82],... [Pg.302]

A more synthetically reliable version of this reaction involves epoxidation of silyl enol ethers. Epoxidation of the silyl enol ethers followed by aqueous workup gives a-hydroxyketones and a-hydroxyaldehydes.144... [Pg.1113]

The area of reactions of phosphate derivatives has been dominated by highly stereoselective reactions in which the latter were used as chiral catalysts or achiral reagents. Among this group of reactions, it is worthy to note several asymmetric reactions ring opening of w 50-aziridinium and episulfonium ions, addition of alcohols to imines, 1,3-dipolar addition of aldehydes, amino esters and dipolarophiles, protonation of silyl enol ethers, epoxidation of a,p-unsaturated aldehydes, aza-ene-type reactions as well as asymmetric versions of named reactions Mannich, Friedel-Crafts, Kabachnik-Fields, aza-Darzens and aza-Henry. [Pg.238]

Silyl enol ethers are a class of electron-rich, nonaromatic compounds that easily form reactive radical cations on one electron oxidation. The silyl enol ether functional group is closely related to the carbonyl function and consequently, syntheses of silyl enol ethers generally make use of enolates. In addition, silyl enol ethers can be described as masked enols or enolates since their reactions often yield ketones. A number of oxidation reactions of silyl enol ethers making use of oxygen or oxygen-containing reagents such as peroxides, peracids (known as Rubottom oxidation), dioxirane, osmium tetraoxide, or triphenyl phosphite ozonide have been described in the literature. In all cases either a-hydroxy-ketones or the silyl enol ether epoxides are formed. [Pg.202]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Me3SiI, CH2CI2, 25°, 15 min, 85-95% yield.Under these cleavage conditions i,3-dithiolanes, alkyl and trimethylsilyl enol ethers, and enol acetates are stable. 1,3-Dioxolanes give complex mixtures. Alcohols, epoxides, trityl, r-butyl, and benzyl ethers and esters are reactive. Most other ethers and esters, amines, amides, ketones, olefins, acetylenes, and halides are expected to be stable. [Pg.180]

Alkylation of enamines with epoxides or acetoxybromoalkanes provided intermediates for cyclic enol ethers (668) and branched chain sugars were obtained by enamine alkylation (669). Sodium enolates of vinylogous amides underwent carbon and nitrogen methylation (570), while vicinal endiamines formed bis-quaternary amonium salts (647). Reactions of enamines with a cyclopropenyl cation gave alkylated imonium products (57/), and 2-benzylidene-3-methylbenzothiazoline was shown to undergo enamine alkylation and acylation (572). A cyclic enamine was alkylated with methylbromoacetate and the product reduced with sodium borohydride to the key intermediate in a synthesis of the quebrachamine skeleton (57i). [Pg.357]

The first asymmetric Mn(salen)-catalyzed epoxidation of silyl enol ethers was carried out by Reddy and Thornton in 1992. Results from the epoxidation of various silyl enol ethers gave the corresponding keto-alcohols in up to 62% ee Subsequently, Adam and Katsuki " independently optimized the protocol for these substrates yielding products in excellent enantioselectivity. [Pg.39]

A retroaldol fragmentation subsequent to the addition of p-TsOI I and a small amount of water to epoxide 206, obtained by oxidation of enol ether 205 with DMDO, resulted in the direct formation of dialdehyde hydrate 208, possessing the spirostructure necessary for the construction of the fused-rings core of ( )-ginkoli-de B. Apparently, hydrolysis of the epoxide produces the hemiacetal 207, which undergoes retroaldol fragmentation of the cydobutane to afford the dialdehyde, which forms the stable hydrate 208 (Scheme 8.52) [94]. [Pg.308]

Dimethyldioxirane DMDO discovered by Murray and coworkers, is a superior choice for the epoxidation of most olefins, giving comparable or higher yields than m-CPBA-based epoxidation [21]. Proceeding rapidly under neutral and mild conditions, it is especially well suited for the synthesis of sensitive epoxides of enol esters, enol lactones [22], and enol ethers [23]. The reaction is stereospecific, gen-... [Pg.447]

Other leaving groups are sometimes used. Sulfates, sulfonates, and epoxides give the expected products. Acetals can behave as substrates, one OR group being replaced by ZCHZ in a reaction similar to 10-101. Ortho esters behave similarly, but the product loses R OH to give an enol ether. ... [Pg.550]

When this reaction sequence is applied to enol esters or enol ethers, the result is a-oxygenation of the starting carbonyl compound. Enol acetates form epoxides that rearrange to a-acetoxyketones. [Pg.1112]

The silyl enol ethers of ketones are also oxidized to a-hydroxy ketones by m-chloroperoxybenzoic acid. If the reaction workup includes acylation, a-acyloxy ketones are obtained.250 These reactions proceed by initial epoxidation of the silyl enol ether, which then undergoes ring opening. Subsequent transfer of either the O-acyl or O- l MS substituent occurs, depending on the reaction conditions. [Pg.1140]

Reactions of 1 with epoxides involve some cycloaddition products, and thus will be treated here. Such reactions are quite complicated and have been studied in some depth.84,92 With cyclohexene oxide, 1 yields the disilaoxirane 48, cyclohexene, and the silyl enol ether 56 (Eq. 29). With ( )- and (Z)-stilbene oxides (Eq. 30) the products include 48, ( > and (Z)-stilbenes, the E- and Z-isomers of silyl enol ether 57, and only one (trans) stereoisomer of the five-membered ring compound 58. The products have been rationalized in terms of the mechanism detailed in Scheme 14, involving a ring-opened zwitterionic intermediate, allowing for carbon-carbon bond rotation and the observed stereochemistry. [Pg.262]

The oxidation of enol ethers and their derivatives is a useful method for the synthesis of a-hydroxy-ketones or their derivatives, which are versatile building blocks for organic synthesis. Since enol ethers and esters are types of olefin, some asymmetric epoxidation and dihydroxylation reactions have been applied to their oxidation. [Pg.225]

Epoxides are believed to be intermediates in the conversion of the enol ethers of 1,3-diketones (ketoaldehydes are less satisfactory) into 2,4-substituted furans by means of the trimethylsulfonium ylids. No epoxides could be isolated, however, nor was it necessary to use acid to effect cy-clization. Methoxydimethylsulfonium ylids were less efficient and tended to produce thiabenzene oxides instead, so Scheme 8 remains speculative.57 The use of thioenols instead of 1,3-diones is advantageous.233... [Pg.176]

More traditional carbon nucleophiles can also be used for an alkylative ring-opening strategy, as exemplified by the titanium tetrachloride promoted reaction of trimethylsilyl enol ethers (82) with ethylene oxide, a protocol which provides aldol products (84) in moderate to good yields <00TL763>. While typical lithium enolates of esters and ketones do not react directly with epoxides, aluminum ester enolates (e.g., 86) can be used quite effectively. This methodology is the subject of a recent review <00T1149>. [Pg.61]

Oxidation of silyl enol ethers. Oxidation of silyl enol ethers to a-hydroxy aldehydes or ketones is usually effected with w-chloroperbenzoic acid (6, 112). This oxidation can also be effected by epoxidation with 2-(phenylsulfonyl)-3-( p-nitrophenyl) oxaziridine in CHC1, at 25-60° followed by rearrangement to a-silyloxy carbonyl compounds, which are hydrolyzed to the a-hydroxy carbonyl compound (BujNF or H,0 + ). Yields are moderate to high. Oxidation with a chiral 2-arene-sulfonyloxaziridine shows only modest enantioselectivity. [Pg.22]


See other pages where Ethers, enol epoxidation is mentioned: [Pg.430]    [Pg.744]    [Pg.354]    [Pg.220]    [Pg.363]    [Pg.203]    [Pg.190]    [Pg.515]    [Pg.214]    [Pg.430]    [Pg.744]    [Pg.354]    [Pg.220]    [Pg.363]    [Pg.203]    [Pg.190]    [Pg.515]    [Pg.214]    [Pg.434]    [Pg.227]    [Pg.228]    [Pg.235]    [Pg.304]    [Pg.42]    [Pg.867]    [Pg.152]    [Pg.88]    [Pg.208]    [Pg.303]   
See also in sourсe #XX -- [ Pg.1177 , Pg.1178 ]

See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Epoxides enolates

© 2024 chempedia.info