Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy transfer yield, definition

Definition and Uses of Standards. In the context of this paper, the term "standard" denotes a well-characterized material for which a physical parameter or concentration of chemical constituent has been determined with a known precision and accuracy. These standards can be used to check or determine (a) instrumental parameters such as wavelength accuracy, detection-system spectral responsivity, and stability (b) the instrument response to specific fluorescent species and (c) the accuracy of measurements made by specific Instruments or measurement procedures (assess whether the analytical measurement process is in statistical control and whether it exhibits bias). Once the luminescence instrumentation has been calibrated, it can be used to measure the luminescence characteristics of chemical systems, including corrected excitation and emission spectra, quantum yields, decay times, emission anisotropies, energy transfer, and, with appropriate standards, the concentrations of chemical constituents in complex S2unples. [Pg.99]

Microanalysis of the three PET-4,4 -SD copolymer yarns for sulfur yielded concentrations in agreement with the theoretical values. Since the 4,4 -SD comonomer was definitely incorporated into the three copolymer yarns, the absorption and luminescence characteristics of the copolymers point towards a co-absorption process between 4,4 -SD and PET rather than an electronic energy transfer process. [Pg.257]

We now focus our attention on the presence of the unperturbed donor quantum yield, Qd, in the definition of R60 [Eq. (12.1)]. We have pointed out previously [1, 2] that xd appears both in the numerator and denominator of kt and, therefore, cancels out. In fact, xo is absent from the more fundamental expression representing the essence of the Forster relationship, namely the ratio of the rate of energy transfer, kt, to the radiative rate constant, kf [Eq. (12.3)]. Thus, this quantity can be expressed in the form of a simplified Forster constant we denote as rc. We propose that ro is better suited to FRET measurements based on acceptor ( donor) properties in that it avoids the arbitrary introduction into the definition of Ra of a quantity (i />) that can vary from one position to another in an unknown and indeterminate manner (for example due to changes in refractive index, [3]), and thereby bypasses the requirement for an estimation of E [Eq. (12.1)]. [Pg.487]

In order to obtain a definite breakthrough of current across an electrode, a potential in excess of its equilibrium potential must be applied any such excess potential is called an overpotential. If it concerns an ideal polarizable electrode, i.e., an electrode whose surface acts as an ideal catalyst in the electrolytic process, then the overpotential can be considered merely as a diffusion overpotential (nD) and yields (cf., Section 3.1) a real diffusion current. Often, however, the electrode surface is not ideal, which means that the purely chemical reaction concerned has a free enthalpy barrier especially at low current density, where the ion diffusion control of the electrolytic conversion becomes less pronounced, the thermal activation energy (AG°) plays an appreciable role, so that, once the activated complex is reached at the maximum of the enthalpy barrier, only a fraction a (the transfer coefficient) of the electrical energy difference nF(E ml - E ) = nFtjt is used for conversion. [Pg.126]

In our discussion above, it was pointed out that a molecule in the excited state can return to lower energy levels by collisional transfer or by light emission. Since these two processes are competitive, the fluorescence intensity of a fluorescing system depends on the relative importance of each process. The fluorescence intensity is often defined in terms of quantum yield, represented by (X This describes the efficiency or probability of the fluorescence process. By definition, XL is the ratio of the number of photons emitted to the number of photons absorbed (Equation 5.6). [Pg.158]


See other pages where Energy transfer yield, definition is mentioned: [Pg.3025]    [Pg.263]    [Pg.14]    [Pg.17]    [Pg.947]    [Pg.38]    [Pg.63]    [Pg.947]    [Pg.139]    [Pg.110]    [Pg.61]    [Pg.154]    [Pg.170]    [Pg.32]    [Pg.3025]    [Pg.46]    [Pg.193]    [Pg.1967]    [Pg.132]    [Pg.65]    [Pg.178]    [Pg.305]    [Pg.713]    [Pg.39]    [Pg.203]    [Pg.150]    [Pg.247]    [Pg.474]    [Pg.83]    [Pg.511]    [Pg.204]    [Pg.62]    [Pg.362]    [Pg.460]    [Pg.99]    [Pg.267]    [Pg.248]    [Pg.337]    [Pg.5586]   
See also in sourсe #XX -- [ Pg.184 , Pg.190 ]




SEARCH



Energy yield

© 2024 chempedia.info