Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule energy level

When subjected to an electron bombardment whose energy level is much higher than that of hydrocarbon covalent bonds (about 10 eV), a molecule of mass A/loses an electron and forms the molecular ion, the bonds break and produce an entirely new series of ions or fragments . Taken together, the fragments relative intensities constitute a constant for the molecule and can serve to identify it this is the basis of qualitative analysis. [Pg.48]

The rotational energy of a rigid molecule is given by 7(7 + l)h /S-n- IkT, where 7 is the quantum number and 7 is the moment of inertia, but if the energy level spacing is small compared to kT, integration can replace summation in the evaluation of Q t, which becomes... [Pg.583]

Wliat does one actually observe in the experunental spectrum, when the levels are characterized by the set of quantum numbers n. Mj ) for the nonnal modes The most obvious spectral observation is simply the set of energies of the levels another important observable quantity is the intensities. The latter depend very sensitively on the type of probe of the molecule used to obtain the spectmm for example, the intensities in absorption spectroscopy are in general far different from those in Raman spectroscopy. From now on we will focus on the energy levels of the spectmm, although the intensities most certainly carry much additional infonnation about the molecule, and are extremely interesting from the point of view of theoretical dynamics. [Pg.63]

The irreducible representations of a symmetry group of a molecule are used to label its energy levels. The way we label the energy levels follows from an examination of the effect of a synnnetry operation on the molecular Sclnodinger equation. [Pg.155]

The character tables of these groups are given in table Al.4.6 and table Al.4.71. If there were no restriction on pemuitation symmetry we might think that die energy levels of the H2 molecule could be of any one of the following four syimnetry... [Pg.173]

The rotation-vibration-electronic energy levels of the PH3 molecule (neglecting nuclear spin) can be labelled with the irreducible representation labels of the group The character table of this group is given in table Al.4.10. [Pg.177]

Feit M D and Fleck J A Jr 1983 Solution of the Schrddinger equation by a spectral method, energy levels of triatomic molecules J. Chem. Phys. 78 301-8... [Pg.1004]

With the assumption of hannonic oscillators, the molecule s quantum energy levels are... [Pg.1018]

Figure A3.12.10. Schematic diagram of the one-dimensional reaction coordinate and the energy levels perpendicular to it in the region of the transition state. As the molecule s energy is increased, the number of states perpendicular to the reaction coordinate increases, thereby increasing the rate of reaction. (Adapted from [4].)... Figure A3.12.10. Schematic diagram of the one-dimensional reaction coordinate and the energy levels perpendicular to it in the region of the transition state. As the molecule s energy is increased, the number of states perpendicular to the reaction coordinate increases, thereby increasing the rate of reaction. (Adapted from [4].)...
Haarhoff P C 1963 The density of vibrational energy levels of polyatomic molecules Mol. Phys. 7 101-17... [Pg.1040]

Figure A3.13.1. Schematic energy level diagram and relationship between mtemiolecular (collisional or radiative) and intramolecular energy transfer between states of isolated molecules. The fat horizontal bars indicate diin energy shells of nearly degenerate states. Figure A3.13.1. Schematic energy level diagram and relationship between mtemiolecular (collisional or radiative) and intramolecular energy transfer between states of isolated molecules. The fat horizontal bars indicate diin energy shells of nearly degenerate states.
There is one special class of reaction systems in which a simplification occurs. If collisional energy redistribution of some reactant occurs by collisions with an excess of heat bath atoms or molecules that are considered kinetically structureless, and if fiirthennore the reaction is either unimolecular or occurs again with a reaction partner M having an excess concentration, dien one will have generalized first-order kinetics for populations Pj of the energy levels of the reactant, i.e. with... [Pg.1050]

As in classical mechanics, the outcome of time-dependent quantum dynamics and, in particular, the occurrence of IVR in polyatomic molecules, depends both on the Flamiltonian and the initial conditions, i.e. the initial quantum mechanical state I /(tQ)). We focus here on the time-dependent aspects of IVR, and in this case such initial conditions always correspond to the preparation, at a time of superposition states of molecular (spectroscopic) eigenstates involving at least two distinct vibrational energy levels. Strictly, IVR occurs if these levels involve at least two distinct... [Pg.1058]

If the experunental technique has sufficient resolution, and if the molecule is fairly light, the vibronic bands discussed above will be found to have a fine structure due to transitions among rotational levels in the two states. Even when the individual rotational lines caimot be resolved, the overall shape of the vibronic band will be related to the rotational structure and its analysis may help in identifying the vibronic symmetry. The analysis of the band appearance depends on calculation of the rotational energy levels and on the selection rules and relative intensity of different rotational transitions. These both come from the fonn of the rotational wavefunctions and are treated by angnlar momentum theory. It is not possible to do more than mention a simple example here. [Pg.1139]

The simplest case is a transition in a linear molecule. In this case there is no orbital or spin angular momentum. The total angular momentum, represented by tire quantum number J, is entirely rotational angular momentum. The rotational energy levels of each state approximately fit a simple fomuila ... [Pg.1140]

Of course, real molecules are not hamronic oscillators, and the energy level expression can be expanded in powers of (v + 1/2). For a single mode we have... [Pg.1153]

An interferometric method was first used by Porter and Topp [1, 92] to perfonn a time-resolved absorption experiment with a -switched ruby laser in the 1960s. The nonlinear crystal in the autocorrelation apparatus shown in figure B2.T2 is replaced by an absorbing sample, and then tlie transmission of the variably delayed pulse of light is measured as a fiinction of the delay This approach is known today as a pump-probe experiment the first pulse to arrive at the sample transfers (pumps) molecules to an excited energy level and the delayed pulse probes the population (and, possibly, the coherence) so prepared as a fiinction of time. [Pg.1979]


See other pages where Molecule energy level is mentioned: [Pg.349]    [Pg.349]    [Pg.41]    [Pg.349]    [Pg.349]    [Pg.41]    [Pg.110]    [Pg.158]    [Pg.177]    [Pg.35]    [Pg.20]    [Pg.63]    [Pg.71]    [Pg.156]    [Pg.156]    [Pg.157]    [Pg.158]    [Pg.170]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.178]    [Pg.180]    [Pg.253]    [Pg.253]    [Pg.802]    [Pg.1021]    [Pg.1119]    [Pg.1124]    [Pg.1141]    [Pg.1145]    [Pg.1151]    [Pg.1153]    [Pg.1159]    [Pg.1243]    [Pg.1500]    [Pg.1591]   
See also in sourсe #XX -- [ Pg.126 ]

See also in sourсe #XX -- [ Pg.152 , Pg.155 , Pg.400 , Pg.401 ]




SEARCH



Molecules energy

© 2024 chempedia.info