Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy at interface

The phase behaviour at equilibrium turned out to be the main property reported in Win-sor s work in the late 1940s. Winsor interpreted the phase behaviour through the so-called R ratio of molecular interaction energies at interface. The R ratio was a handy theoretical concept to understand the variations of the phase behaviour of surfactant-oil-water systems and somehow of the emulsion properties. It is essentially qualitative, but for the first time the phase behaviour was linked with a condition that depended on all formulation variables, but could be expressed as a single generalised variable, i.e. the R ratio [1]. The original R ratio was... [Pg.92]

Thanks to the experimental data he gathered on different systems. Winsor was able to asscK iate the phase behavior with the physicochemical situation at interface. He proposed a pedagogical approach to interpret the results that would make use of the ratio of the interaction energies at interface. [Pg.34]

Today the electrooptical properties of liquid crystals form well-developed branches both in the physics and technology of liquid crystals. In addition, electrooptical measurements are the basis of a number of precise methods for determining the physical parameters of a material, such as its elastic and viscosity coefficients, optical anisotropy, spontaneous polarization, flexoelectric coefficients, anchoring energies at interfaces, etc. [Pg.479]

Uptake of particles by the epithelium is likely to be enhanced by airway surfactant and could account for the delayed clearance of fine and ultrafine particles from the airways noted in some studies (126,127). Forces from the free energy at interfaces and dividing lines might also contribute substantially to particle-cell interactions. These interactions are considered nonspecific, in contrast with the specific receptor-ligand interactions. Thus, nonspecific interactions could contribute to the uptake of particles by cells that are not professional phagocytes, such as epithelial cells. Epithelial cells of the airways take up particles such as silica and asbestos (128,129). [Pg.555]

The dynamics of fast processes such as electron and energy transfers and vibrational and electronic deexcitations can be probed by using short-pulsed lasers. The experimental developments that have made possible the direct probing of molecular dissociation steps and other ultrafast processes in real time (in the femtosecond time range) have, in a few cases, been extended to the study of surface phenomena. For instance, two-photon photoemission has been used to study the dynamics of electrons at interfaces [ ]. Vibrational relaxation times have also been measured for a number of modes such as the 0-Fl stretching m silica and the C-0 stretching in carbon monoxide adsorbed on transition metals [ ]. Pump-probe laser experiments such as these are difficult, but the field is still in its infancy, and much is expected in this direction m the near fiitiire. [Pg.1790]

The stored strain energy can also be determined for the general case of multiaxial stresses [1] and lattices of varying crystal structure and anisotropy. The latter could be important at interfaces where mode mixing can occur, or for fracture of rubber, where f/ is a function of the three stretch rations 1], A2 and A3, for example, via the Mooney-Rivlin equation, or suitable finite deformation strain energy functional. [Pg.380]

Fracture energies have been determined for bond failure at either end of the bond line for a sheared rubber block, but the results are inconclusive—it is not clear where bond failure will occur, or at what load, even when the fracture properties of the rubber are known. Thus, the initiation of cracks, especially at interfaces and comers, needs further study. [Pg.19]

Liposomes have been widely used as model membranes and their physicochemical properties have therefore been studied extensively. More recently, they have become important tools for the study of membrane-mediated processes (e.g., membrane fusion), catalysis of reactions occurring at interfaces, and energy conversion. Besides, liposomes are currently under investigation as carrier systems for drugs and as antigen-presenting systems to be used as vaccines. [Pg.261]

On the assumption that = 2, the theoretical values of the ion solvation energy were shown to agree well with the experimental values for univalent cations and anions in various solvents (e.g., 1,1- and 1,2-dichloroethane, tetrahydrofuran, 1,2-dimethoxyethane, ammonia, acetone, acetonitrile, nitromethane, 1-propanol, ethanol, methanol, and water). Abraham et al. [16,17] proposed an extended model in which the local solvent layer was further divided into two layers of different dielectric constants. The nonlocal electrostatic theory [9,11,12] was also presented, in which the permittivity of a medium was assumed to change continuously with the electric field around an ion. Combined with the above-mentioned Uhlig formula, it was successfully employed to elucidate the ion transfer energy at the nitrobenzene-water and 1,2-dichloroethane-water interfaces. [Pg.41]

As this volume attests, a wide range of chemistry occurs at interfacial boundaries. Examples range from biological and medicinal interfacial problems, such as the chemistry of anesthesia, to solar energy conversion and electrode processes in batteries, to industrial-scale separations of metal ores across interfaces, to investigations into self-assembled monolayers and Langmuir-Blodgett films for nanoelectronics and nonlinear optical materials. These problems are based not only on structure and composition of the interface but also on kinetic processes that occur at interfaces. As such, there is considerable motivation to explore chemical dynamics at interfaces. [Pg.404]

The voltammetric information given here suggests that the transfer of an objective cation from Wl to LM can be achieved under a smaller membrane potential when an anion for which the Gibbs transfer energy at the LM/W2 interface is smaller is added into W2. In the case of the above-mentioned membrane system, the transfer of K+ from Wl to LM in the presence of 0.01 M MgBr2 in W2 is expected to be attained even at the membrane potential 0.19 V (which corresponds to the Gibbs energy of transfer of 18.3... [Pg.493]

It follows from the above that the mechanism for electrical potential oscillation across the octanol membrane in the presence of SDS would most likely be as follows dodecyl sulfate ions diffuse into the octanol phase (State I). Ethanol in phase w2 must be available for the transfer energy of DS ions from phase w2 to phase o to decrease and thus, facilitates the transfer of DS ions across this interface. DS ions reach interface o/wl (State II) and are adsorbed on it. When surfactant concentration at the interface reaches a critical value, a surfactant layer is formed at the interface (State III), whereupon, potential at interface o/wl suddenly shifts to more negative values, corresponding to the lower potential of oscillation. With change in interfacial tension of the interface, the transfer and adsorption of surfactant ions is facilitated, with consequent fluctuation in interface o/ wl and convection of phases o and wl (State IV). Surfactant concentration at this interface consequently decreased. Potential at interface o/wl thus takes on more positive values, corresponding to the upper potential of oscillation. Potential oscillation is induced by the repetitive formation and destruction of the DS ion layer adsorbed on interface o/wl (States III and IV). This mechanism should also be applicable to oscillation with CTAB. Potential oscillation across the octanol membrane with CTAB is induced by the repetitive formation and destruction of the cetyltrimethylammonium ion layer adsorbed on interface o/wl. Potential oscillation is induced at interface o/wl and thus drugs were previously added to phase wl so as to cause changes in oscillation mode in the present study. [Pg.711]

Although the desorption energy at the metal-electrolyte interface should be different from that of the metal-gas phase, there is no reason to expect a different behavior for the change of d with 0. [Pg.158]


See other pages where Energy at interface is mentioned: [Pg.57]    [Pg.57]    [Pg.281]    [Pg.1788]    [Pg.1889]    [Pg.348]    [Pg.200]    [Pg.205]    [Pg.1880]    [Pg.36]    [Pg.52]    [Pg.62]    [Pg.8]    [Pg.415]    [Pg.142]    [Pg.314]    [Pg.370]    [Pg.371]    [Pg.518]    [Pg.715]    [Pg.262]    [Pg.501]    [Pg.27]    [Pg.167]    [Pg.298]    [Pg.180]    [Pg.84]    [Pg.110]    [Pg.111]    [Pg.147]    [Pg.150]    [Pg.152]    [Pg.541]    [Pg.74]    [Pg.346]    [Pg.378]    [Pg.4]   
See also in sourсe #XX -- [ Pg.73 , Pg.74 ]




SEARCH



Block diagram of energy flows at the snow -ice-water interface

Energy Level Alignment at the Interface

Flatband Potential and Position of Energy Bands at the Interface

Interface energy

© 2024 chempedia.info