Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective groups

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The wM-diacetate 363 can be transformed into either enantiomer of the 4-substituted 2-cyclohexen-l-ol 364 via the enzymatic hydrolysis. By changing the relative reactivity of the allylic leaving groups (acetate and the more reactive carbonate), either enantiomer of 4-substituted cyclohexenyl acetate is accessible by choice. Then the enantioselective synthesis of (7 )- and (S)-5-substituted 1,3-cyclohexadienes 365 and 367 can be achieved. The Pd(II)-cat-alyzed acetoxylactonization of the diene acids affords the lactones 366 and 368 of different stereochemistry[310]. The tropane alkaloid skeletons 370 and 371 have been constructed based on this chemoselective Pd-catalyzed reactions of 6-benzyloxy-l,3-cycloheptadiene (369)[311]. [Pg.70]

Synthetic utility of stereoselective alkylations in natural product chemistry is exemplified by the preparation of optically active 2-arylglycine esters (38). Chirally specific a-amino acids with methoxyaryl groups attached to the a-carbon were prepared by reaction of the dimethyl ether of a chiral bis-lactam derivative with methoxy arenes. Using SnCl as the Lewis acid, enantioselectivities ranging from 65 to 95% were obtained. [Pg.553]

A third variation of this strategy has been appHed to an enantioselective total synthesis of cortisone. From an appropriately functionalized, scalemic hydrindan that possessed an 11-oxo-group and a masked corticoid side-chain, (+)-cortisol was produced in an 11-step total synthesis (213). [Pg.439]

Chiral Titanium Complexes. Chiral titanium complexes are useful for the enantioselective addition of nucleophiles to carbonyl groups ... [Pg.150]

Porcine liver esterase (PLE) gives excellent enantioselectivity with both dimethyl 3-methylglutarate [19013-37-7] (lb) and malonate (2b) diester. It is apparent from Table 1 that the enzyme s selectivity strongly depends on the size of the alkyl group in the 2-position. The hydrolysis of ethyl derivative (2c) gives the S-enantiomer with 75% ee whereas the hydrolysis of heptyl derivative (2d) results in the R-monoester with 90% ee. Chymotrypsin [9004-07-3] (CT) does not discriminate glutarates that have small substituents in the 3-position well. However, when hydroxyl is replaced by the much bulkier benzyl derivative (Ic), enantioselectivity improves significantly. [Pg.333]

It is generally beheved that selectivity of hydrolytic enzymes strongly depends on the proximity of the chiral center to the reacting carbonyl group, and only a few examples of successful resolutions exist for compounds that have the chiral center removed by more than three bonds. A noticeable exception to this rule is the enantioselective hydrolysis by Pseudomonasfluorescens Hpase (PEL) of racemic dithioacetal (5) that has a prochiral center four bonds away from the reactive carboxylate (24). The monoester (6) is obtained in 89% yield and 98% ee. [Pg.333]

PPL and Hpase from Pseudomonas sp. catalyze enantioselective hydrolysis of sulfinylalkanoates. For example, methyl sulfinylacetate (46) was resolved by Pseudomonas sp. Hpase in good yield and excellent selectivity (62). This procedure was suitable for the preparation of sulfinylalkanoates where the ester and sulfoxide groups are separated by one or two methylene units. Compounds with three methylene groups were not substrates for the Hpase (65). [Pg.338]

Resolution of Racemic Amines and Amino Acids. Acylases (EC3.5.1.14) are the most commonly used enzymes for the resolution of amino acids. Porcine kidney acylase (PKA) and the fungaly3.spet i//us acylase (AA) are commercially available, inexpensive, and stable. They have broad substrate specificity and hydrolyze a wide spectmm of natural and unnatural A/-acyl amino acids, with exceptionally high enantioselectivity in almost all cases. Moreover, theU enantioselectivity is exceptionally good with most substrates. A general paper on this subject has been pubUshed (106) in which the resolution of over 50 A/-acyl amino acids and analogues is described. Also reported are the stabiUties of the enzymes and the effect of different acyl groups on the rate and selectivity of enzymatic hydrolysis. Some of the substrates that are easily resolved on 10—100 g scale are presented in Figure 4 (106). Lipases are also used for the resolution of A/-acylated amino acids but the rates and optical purities are usually low (107). [Pg.343]

The frequent use of chiral controller or auxiliary groups in enantioselective synthesis (or diastereoselective processes) obviously requires the addition of such units retrosynthetically, as illustrated by the antithetic conversion 34 =i> 35. [Pg.14]

Spatial and/or coordinative bias can be introduced into a reaction substrate by coupling it to an auxiliary or controller group, which may be achiral or chiral. The use of chiral controller groups is often used to generate enantioselectively the initial stereocenters in a multistep synthetic sequence leading to a stereochemically complex molecule. Some examples of the application of controller groups to achieve stereoselectivity are shown retrosynthetically in Chart 19. [Pg.50]

There are a number of powerful synthetic reactions which join two trigonal carbons to form a CC single bond in a stereocontrolled way under proper reaction conditions. Included in this group are the aldol, Michael, Claisen rearrangement, ene and metalloallyl-carbonyl addition reactions. The corresponding transforms are powerfully stereosimplifying, especially when rendered enantioselective as well as diastereoselective by the use of chiral controller groups. Some examples are listed in Chart 20. [Pg.51]


See other pages where Enantioselective groups is mentioned: [Pg.169]    [Pg.158]    [Pg.194]    [Pg.377]    [Pg.954]    [Pg.261]    [Pg.1158]    [Pg.27]    [Pg.169]    [Pg.158]    [Pg.194]    [Pg.377]    [Pg.954]    [Pg.261]    [Pg.1158]    [Pg.27]    [Pg.617]    [Pg.78]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.68]    [Pg.126]    [Pg.512]    [Pg.517]    [Pg.65]    [Pg.324]    [Pg.325]    [Pg.73]    [Pg.75]    [Pg.247]    [Pg.260]    [Pg.176]    [Pg.178]    [Pg.439]    [Pg.348]    [Pg.189]    [Pg.92]    [Pg.110]    [Pg.26]   
See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Enantioselective Functional Group Interconversions

Enantioselective synthesis atom/group-transfer reactions

© 2024 chempedia.info