Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enamine Michael reactions

There are two advantages to the enamine-Michael reaction versus the enolate-ion-Michael that make enamines so useful in biological pathways. First, an enamine is neutral, easily prepared, and easily handled, while an enolate ion is charged, sometimes difficult to prepare, and must be handled with care. [Pg.897]

Synthesis We shall need the usual activating group for both Michael reactions it can t be a CO2R group as there isn t room, so it will have to be an enamine. The synthesis is therefore ... [Pg.67]

The Michael reaction with enamines is exemplified in this procedure. In a second (spontaneous) step of the reaction, an aldol-type condensation occurs resulting in cyclization. Finally, the morpholine enamine of the product forms and is hydrolized by the addition of water to yield a mixture of octalones, which is separated by fractional crystallization. J -Octalone-2 can be reduced by lithium in anhydrous ammonia to the saturated tra/i5-2-decalone (Chapter 3, Section III). [Pg.82]

The net effect of the Stork reaction is the Michael addition of a ketone to an cn/3-unsaturated carbonyl compound. For example, cyclohexanone reacts with the. cyclic amine pyrrolidine to yield an enamine further reaction with an enone such as 3-buten-2-one yields a Michael adduct and aqueous hydrolysis completes the sequence to provide a 1,5-diketone (Figure 23.8). [Pg.897]

Figure 23.8 The Stork reaction between cyclohexanone and 3-buten-2-one. Cyclohexanone is first converted into an enamine, the enamine adds to the a -unsaturated ketone in a Michael reaction, and the conjugate addition product is hydrolyzed to yield a 1,5-diketone. Figure 23.8 The Stork reaction between cyclohexanone and 3-buten-2-one. Cyclohexanone is first converted into an enamine, the enamine adds to the a -unsaturated ketone in a Michael reaction, and the conjugate addition product is hydrolyzed to yield a 1,5-diketone.
The Robinson annulation is a two-step process that combines a Michael reaction with an intramolecular aldol reaction. It takes place between a nucleophilic donor, such as a /3-keto ester, an enamine, or a /3-diketone, and an a,/3-unsaturated ketone acceptor, such as 3-buten-2-one. The product is a substituted 2-cyclohexenone. [Pg.899]

The first step of the Robinson annulation is simply a Michael reaction. An enamine or an enolate ion from a jS-keto ester or /3-diketone effects a conjugate addition to an a-,/3-unsaturated ketone, yielding a 1,5-diketone. But as we saw in Section 23.6,1,5-diketones undergo intramolecular aldol condensation to yield cyclohexenones when treated with base. Thus, the final product contains a six-membered ring, and an annulation has been accomplished. An example occurs during the commercial synthesis of the steroid hormone estrone (figure 23.9). [Pg.899]

Coniine, molecular model of. 28 structure of, 294 Conjugate acid, 49 Conjugate base, 49 Conjugate carbonyl addition reaction, 725-729 amines and, 727 enamines and, 897-898 Gilman reagents and, 728-729 mechanism of, 725-726 Michael reactions and, 894-895 water and. 727 Conjugated diene, 482... [Pg.1292]

Mannich bases (see 16-15) and p-halo carbonyl compounds can also be used as substrates these are converted to the C=C—Z compounds in situ by the base (16-15, 17-12). Substrates of this kind are especially useful in cases where the C=C—Z compound is unstable. The reaction of C=C—Z compounds with enamines (12-18) can also be considered a Michael reaction. Michael reactions are reversible. [Pg.1023]

In practice it is simpler to use MeKHg to make an enamine from (26) and to encourage the Michael reaction whereupon cyclisation occurs rapidly. [Pg.463]

Yamamoto s group recently published a highly enantioselective chiral amine-catalyzed domino O-nitroso aldol/Michael reaction of 2-268 and 2-269 (Scheme 2.63) [141]. As products, the formal Diels-Alder adducts 2-271 were obtained with >98% 66, which is probably due to the selective attack of an enamine, temporarily formed from amine 2-270 and enone 2-268, onto the nitroso functionality. [Pg.87]

Some new observations were published on the peculiar reactivity of the phenyloxazolopiperidine 166 which acts as an equivalent of an enamine, reacting with methyl vinyl ketone in a Michael reaction and with diethyl acetylenedicarboxylate in a [2+2] cycloaddition reaction <00JOC3209>. [Pg.229]

Michael reaction of enamines of u-alkyl- -keto esters. The chiral lithioen-amine (1), prepared from (S)-valine /-butyl ester, does not react with methyl vinyl ketone or ethyl acrylate unless these Michael acceptors are activated by ClSi(CH3)3... [Pg.347]

C3 and N11 are nucleophilic, C4 and C8 are electrophilic. Which bond forms first Once the N11-C4 bond forms, C3 is made much less nucleophilic. So form the C3-C8 bond first (Michael reaction). C3 is made nucleophilic by tautomerization to the enol. The Michael reaction must be preceded by protonation of N11 to make C8 electrophilic enough. After the Michael reaction, the enamine is formed by the mechanism discussed in the text. [Pg.74]

A bifunctional mechanism involving enamine catalysis [55, 58, 77] was clearly indicated in the Michael reactions promoted by catalyst 101. The observed... [Pg.249]

Resin-bound amines can be converted into imines [710,711] or enamines by reaction with carbonyl compounds (Entries 6 and 7, Table 3.39). Resin-bound enamines have also been prepared by Michael addition of resin-bound secondary amines to acceptor-substituted alkynes [712], by Hg(II)-catalyzed addition of resin-bound secondary amines to unactivated alkynes [713], by addition of C-nucleophiles to resin-bound imino ethers [714], and by chemical modification of other resin-bound enamines [712,713,715], Acceptor-substituted enamines ( push-pull alkenes) are not always susceptible to hydrolytic cleavage by TFA alone and might require aqueous acids to undergo hydrolysis [716]. [Pg.119]

Early investigations have demonstrated that aldehydes and ketones can be enantioselectiveiy a-alkyl-ated via Michael reactions of the corresponding enamines, prepared from proline-derived secondary amines.149-156 However, optical purities of the products were generally low and never exceeded 59% ee.iS1 This kind of asymmetric a-alkylation could later be improved, allowing for example the preparation of compound (141) with high ee (Scheme 51).156-160... [Pg.221]

The origin of the observed 1,4-asymmetric induction in Michael reactions of chiral imines (Scheme 28) has been rationalized by conformational transmission of chirality. Thus, the phenethylamine auxiliary forces the cyclohexene part of the intermediate enamine into a half-chair conformation (140) that is 0.8 kcal mol-1 lower in energy than (141). Axial attack as shown then leads to the major product the energy difference between (140) and (141) roughly correlates with the observed diastereoselectivity ( 9 l).105... [Pg.418]

According to the classical Hantzsch synthesis of pyridine derivatives, an a,(5-unsaturated carbonyl compound is first formed by Knoevenagel condensation of an aldehyde with a P-dicarbonyl compound. The next step is a Michael reaction with another equivalent of the P-dicarbonyl compound (or its enamine) to form a 1,5-diketone, which finally undergoes a cyclocondensation with ammonia to give a 1,4-dihydropyridine with specific symmetry in its substitution pattern. [Pg.236]

An efficient preparation of 1,5-diketones as precursors to D-ring annulated heterosteroids was elaborated by R.C. Boruah et al. [96] (Scheme 24). Readily available 16-dehydropregnenolone acetate (16-DPA) was used in a Michael reaction with enamines. [Pg.23]


See other pages where Enamine Michael reactions is mentioned: [Pg.1297]    [Pg.77]    [Pg.93]    [Pg.56]    [Pg.441]    [Pg.329]    [Pg.237]    [Pg.245]    [Pg.247]    [Pg.250]    [Pg.326]    [Pg.251]    [Pg.162]    [Pg.65]    [Pg.311]    [Pg.6]    [Pg.348]    [Pg.311]    [Pg.129]   
See also in sourсe #XX -- [ Pg.455 , Pg.472 , Pg.473 , Pg.474 , Pg.475 , Pg.476 , Pg.477 ]




SEARCH



Enamine reaction

Enamine-Michael

© 2024 chempedia.info