Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Element ionic radius

Element Ionic radii Transition elements Ionic radii Absorption (color) Emission Rare earths Ionic radii Emission... [Pg.48]

Elements Ionic radius (A) Electro- negativities Elements Ionic radius (A) Electro- negativities... [Pg.58]

Symbol Ca atomic number 20 atomic weight 40.078 a Group IIA (Group 2) alkaline-earth metaUic element ionic radius 1.06 A (Ca2+) electron configuration [Ar]4s2 valence state +2 standard electrode potential, E° = -2.87V stable isotopes and their abundance Ca-40 (97.00%), Ca-44 (2.06%) Ca-42 (0.64%), Ca-48 (0.18%), Ca-43 (0.145%), and Ca-46 (0.003%) also the element has six unstable isotopes of which Ca-41 has the longest half-life, l.lxlO yr (decay mode electron capture), and Ca-38 has shortest half life 0.66 sec (P-decay). [Pg.157]

Element Ionisation energy (kj mof ) Metallic radius (nm) Ionic radius (nm) Heal oj laporibation at 298 K (kJ mol ) Hydration energy oj gaseous ion (kJ moI ) (V)... [Pg.120]

The data in Table 7.1 show that, as expected, density, ionic radius, and atomic radius increase with increasing atomic number. However, we should also note the marked differences in m.p. and liquid range of boron compared with the other Group III elements here we have the first indication of the very large difference in properties between boron and the other elements in the group. Boron is in fact a non-metal, whilst the remaining elements are metals with closely related properties. [Pg.138]

Element Atom radius, pm Effective ionic radii, pm ... [Pg.305]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

M +(g)-(-e" this is 7297kJ mol for Li but drops to 2255kJmol for Cs. The largest possible lattice energy to compensate for this would be obtained with the smallest halogen F and (making plausible assumptions on lattice structure and ionic radius) calculations indicate that CsF2 could indeed be formed exothermically from its elements ... [Pg.83]

Table 5.1 lists some of the atomic properties of the Group 2 elements. Comparison with the data for Group 1 elements (p. 75) shows the substantial increase in the ionization energies this is related to their smaller size and higher nuclear charge, and is particularly notable for Be. Indeed, the ionic radius of Be is purely a notional figure since no compounds are known in which uncoordinated Be has a 2- - charge. In aqueous solutions the reduction potential of... [Pg.111]

Scandium is very widely but thinly distributed and its only rich mineral is the rare thortveitite, Sc2Si20v (p. 348), found in Norway, but since scandium has only small-scale commercial use, and can be obtained as a byproduct in the extraction of other materials, this is not a critical problem. Yttrium and lanthanum are invariably associated with lanthanide elements, the former (Y) with the heavier or Yttrium group lanthanides in minerals such as xenotime, M "P04 and gadolinite, M M SijOio (M = Fe, Be), and the latter (La) with the lighter or cerium group lanthanides in minerals such as monazite, M P04 and bastnaesite, M C03F. This association of similar metals is a reflection of their ionic radii. While La is similar in size to the early lanthanides which immediately follow it in the periodic table, Y , because of the steady fall in ionic radius along the lanthanide series (p. 1234), is more akin to the later lanthanides. [Pg.945]

The electron configuration or orbital diagram of an atom of an element can be deduced from its position in the periodic table. Beyond that, position in the table can be used to predict (Section 6.8) the relative sizes of atoms and ions (atomic radius, ionic radius) and the relative tendencies of atoms to give up or acquire electrons (ionization energy, electronegativity). [Pg.133]

The radii of cations and anions derived from atoms of the main-group elements are shown at the bottom of Figure 6.13. The trends referred to previously for atomic radii are dearly visible with ionic radius as well. Notice, for example, that ionic radius increases moving down a group in the periodic table. Moreover the radii of both cations (left) and anions (right) decrease from left to right across a period. [Pg.154]

Ionic radius The radius assigned to a monatomic ion, 154 main-group elements, 153t Ionic solids, 240-245 Ionization expression, 378q percent, 362... [Pg.690]

The ionic radius of an element is its share of the distance between neighboring ions in an ionic solid (12). The distance between the centers of a neighboring cation and anion is the sum of the two ionic radii. In practice, we take the radius of the oxide ion to he 140. pm and calculate the radii of other ions on the basis of that value. For example, because the distance between the centers of neighboring Mg2+ and O2 ions in magnesium oxide is 212 pm, the radius of the Mg21 ion is reported as 212 pm - 140 pm = 72 pm. [Pg.165]

The approach taken here is to use the lattice strain model to derive the partition coefficient of a U-series element (such as Ra) from the partition coefficient of its proxy (such as Ba) under the appropriate conditions. Clearly the proxy needs to be an element that forms ions of the same charge and similar ionic radius to the U-series element of interest, so that the pair are not significantly fractionated from each other by changes in phase composition, pressure or temperature. Also the partitioning behavior of the proxy must be reasonably well constrained under the conditions of interest. Having established a suitable partition coefficient for the proxy, the partition coefficient for the U-series element can then be obtained via rearrangement of Equation (2) (Blundy and Wood 1994) ... [Pg.79]


See other pages where Element ionic radius is mentioned: [Pg.220]    [Pg.7]    [Pg.82]    [Pg.169]    [Pg.608]    [Pg.256]    [Pg.79]    [Pg.214]    [Pg.224]    [Pg.223]    [Pg.475]    [Pg.113]    [Pg.605]    [Pg.662]    [Pg.948]    [Pg.1227]    [Pg.1282]    [Pg.120]    [Pg.94]    [Pg.153]    [Pg.1010]    [Pg.197]    [Pg.198]    [Pg.96]    [Pg.420]    [Pg.192]    [Pg.60]    [Pg.68]    [Pg.74]    [Pg.78]    [Pg.80]    [Pg.81]    [Pg.83]    [Pg.84]    [Pg.116]   
See also in sourсe #XX -- [ Pg.105 , Pg.106 , Pg.107 ]

See also in sourсe #XX -- [ Pg.105 , Pg.106 , Pg.107 ]

See also in sourсe #XX -- [ Pg.105 , Pg.106 , Pg.107 ]




SEARCH



Elemental ionic

Ionic elements

Ionic radius

© 2024 chempedia.info