Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic substitution elimination

True electrophilic substitution is very difficult in pyridopyridazines. For example, the [3,4-d] parent (286) is inert to hot 65% oleum (68AJC1291), and although formation of a 3-bromo derivative (308) was reported in the [2,3-d] series, it seems to have arisen by an addition-elimination reaction via the dibromide (309) (69AJC1745). Attempted chlorination led to ring opening. A similar effect was observed in the [3,4-d] system, where an 8-bromo derivative was obtained (77BSF665), and in iV-oxides of the pyrido[2,3-c]pyridazine and fused pyridazino[3,4-c]isoquinoline series (72JHC351). The formation of (311) from (310)... [Pg.237]

The general mechanism for electrophilic substitution suggests that groups other than hydrogen could be displaced, provided the electrophile attacked at the substituted carbon. Substitution at a site already having a substituent is called ipso substitution and has been observed in a number of circumstances. The ease of removal of a substituent depends on its ability to accommodate a positive charge. This fector determines whether the newly attached electrophile or the substituent is eliminated from the [Pg.588]

Chlorination. Electrophilic chlorination of quinoline (66) in neutral medium showed a positional selectivity order of 3 > 6 > 8. The 5- and 8-positions should be sterically hindered to some extent. Hammett cr+ values predict an order for electrophilic substitution of 5 > 8 = 6 > 3. Treatment with chlorine at 160-190°C converted quinoline into a mixture of 3-chloro-, 3,4-dichloro-, 3,4,6- and 3,4,8-trichloro-, 3,4,6,8-tetrachloro-, and 3,4,6,7,8-pentachloro-quinolines. At lower temperatures ( 100°C) the major product was 3-chloroquinoline, albeit in low yield. The 4-substituted species may have arisen from an addition-elimination or radical process (70JHC171). [Pg.286]

Although electrophilic substitution in these compounds is difficult, bromination of pyridyl[2,3-bromo derivative, in accord with charge density calculations [73HC(27)968]. it is likely that this product formed as a result of HBr elimination from a 3,4-dibromo... [Pg.334]

Volume 8 Volume 9 Volume 10 Volume 12 Volume 13 Proton Transfer Addition and Elimination Reactions of Aliphatic Compounds Ester Formation and Hydrolysis and Related Reactions Electrophilic Substitution at a Saturated Carbon Atom Reactions of Aromatic Compounds Section 5. POLYMERISATION REACTIONS (3 volumes)... [Pg.343]

In Part 2 of this book, we shall be directly concerned with organic reactions and their mechanisms. The reactions have been classified into 10 chapters, based primarily on reaction type substitutions, additions to multiple bonds, eliminations, rearrangements, and oxidation-reduction reactions. Five chapters are devoted to substitutions these are classified on the basis of mechanism as well as substrate. Chapters 10 and 13 include nucleophilic substitutions at aliphatic and aromatic substrates, respectively, Chapters 12 and 11 deal with electrophilic substitutions at aliphatic and aromatic substrates, respectively. All free-radical substitutions are discussed in Chapter 14. Additions to multiple bonds are classified not according to mechanism, but according to the type of multiple bond. Additions to carbon-carbon multiple bonds are dealt with in Chapter 15 additions to other multiple bonds in Chapter 16. One chapter is devoted to each of the three remaining reaction types Chapter 17, eliminations Chapter 18, rearrangements Chapter 19, oxidation-reduction reactions. This last chapter covers only those oxidation-reduction reactions that could not be conveniently treated in any of the other categories (except for oxidative eliminations). [Pg.381]

Electrophilic substitution, e.g. of the 2-position of the indole ring, followed by the elimination of water leads to the formation of cyanin dyes from ergot alkaloids [53]. [Pg.130]

Dimethylamino)-benzaldehyde reacts in acidic medium, e.g. with the indole ring of cyclopiazione or ergot alkaloids and forms a cyanin dyestuff by electrophilic substitution in the 2-position followed by the elimination of water [12, 17]. [Pg.134]

The elimination is promoted by oxidation of the addition product to the selenoxide by f-butyl hydroperoxide. The regioselectivity in this reaction is such that the hydroxy group becomes bound at the more-substituted end of the carbon-carbon double bond. The regioselectivity of the addition step follows Markovnikov s rule with PhSe+ acting as the electrophile. The elimination step specifically proceeds away from the oxygen functionality. [Pg.1126]

The mechanism for electrophilic aromatic substitution is addition-elimination. Using these working hypotheses, Mills and Nixon explained the regioselectivity of electrophilic substitution in 5-hydroxyindan versus 6-hydroxytetralin. [Pg.174]

If we are correct in our assumption that the electrophilic substitution of aromatic species involves such a complexes as intermediates—and it has proved possible actually to isolate them in the course of some such substitutions (p. 136)—then what we commonly refer to as aromatic substitution really involves initial addition followed by subsequent elimination. How this basic theory is borne out in the common electrophilic substitution reactions of benzene will now be considered. [Pg.133]

Pyrimidinyl halides are not only precursors for Pd-catalyzed reactions, but also important pharmaceuticals in their own right. One of the most frequently employed approaches for halopyrimidine synthesis is direct halogenation. When pyrimidinium hydrochloride and 2-aminopyrimidine were treated with bromine, 5-bromopyrimidine and 2-amino-5-bromopyrimidine were obtained, respectively, via an addition-elimination process instead of an aromatic electrophilic substitution [4, 5], Analogously, 2-chloro-5-bromopyrimidine (1) was generated from direct halogenation of 2-hydroxypyrimidine [6], Treating 1 with HI then gave to 2-iodo-5-bromopyrimidine (2). In the preparation of 5-bromo-4,6-dimethoxypyrimidine (4), N-bromosuccinimide was found to be superior to bromine for the bromination of 4,6-dimethoxypyrimidine (3) [7]. [Pg.376]

A reaction in which one functional group (see p.lO) is replaced by another is termed substitution. Depending on the process involved, a distinction is made between nucleophilic and electrophilic substitution reactions (see chemistry textbooks). Nucleophilic substitutions start with the addition of one molecule to another, followed by elimination of the so-called leaving group. [Pg.14]

For example, 3-bromopyridine is formed when pyridine is reacted with bromine in the presence of oleum (sulfur trioxide in cone, sulfuric acid) at 130 °C (Scheme 2.4). Direct electrophilic substitution is not involved, however, aszwitterionic (dipolar) pyridinium-A-sulfonate is the substrate for an addition of bromide ion. Subsequently, the dihydropyridine that is formed reacts, possibly as a dienamine, with bromine to generate a dibromide, which then eliminates bromide ion from C-2. It is notable that no bromination occurs under similar conditions when oleum is replaced by cone, sulfuric acid alone instead, pyridinium hydrogensul-fate is produced. [Pg.20]

When 2-allylbenzofuran (151, Scheme 39) is allowed to react with ethyl (dichloro)ethoxyacetate (152) in the presence of tin(IV) chloride at — 78°C, an electrophilic substitution occurs, and the intermediate 153, after elimination of hydrogen chloride, undergoes an electrocyclic reaction, producing ethyl dibenzofuran-l-carboxylate (154). ... [Pg.41]


See other pages where Electrophilic substitution elimination is mentioned: [Pg.387]    [Pg.80]    [Pg.150]    [Pg.60]    [Pg.54]    [Pg.61]    [Pg.279]    [Pg.333]    [Pg.3]    [Pg.103]    [Pg.36]    [Pg.316]    [Pg.316]    [Pg.518]    [Pg.199]    [Pg.3]    [Pg.316]    [Pg.175]    [Pg.71]    [Pg.26]    [Pg.243]    [Pg.872]    [Pg.35]   
See also in sourсe #XX -- [ Pg.1326 ]




SEARCH



Addition-Elimination electrophilic substitution

Electrophilic substitution elimination reactions

Electrophilic substitution on aromatics addition-elimination

Substitution-elimination

© 2024 chempedia.info