Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic addition reactions nitration

Benzene s aromaticity causes it to undergo electrophilic aromatic substitution reactions. The electrophilic addition reactions characteristic of alkenes and dienes would lead to much less stable nonaromatic addition products. The most common electrophilic aromatic substitution reactions are halogenation, nitration, sulfonation, and Friedel-Crafts acylation and alkylation. Once the electrophile is generated, all electrophilic aromatic substitution reactions take place by the same two-step mechanism (1) The aromatic compound reacts with an electrophile, forming a carbocation intermediate and (2) a base pulls off a proton from the carbon that... [Pg.617]

Not only are there substrates for which the treatment is poor, but it also fails with very powerful electrophiles this is why it is necessary to postulate the encounter complex mentioned on page 680. For example, relative rates of nitration of p-xylene, 1,2,4-trimethylbenzene, and 1,2,3,5-tetramethylbenzene were 1.0, 3.7, and 6.4, though the extra methyl groups should enhance the rates much more (p-xylene itself reacted 295 times faster than benzene). The explanation is that with powerful electrophiles the reaction rate is so rapid (reaction taking place at virtually every encounter between an electrophile and substrate molecule) that the presence of additional activating groups can no longer increase the rate. ... [Pg.694]

The addition reactions discussed in Sections 4.1.1 and 4.1.2 are initiated by the interaction of a proton with the alkene. Electron density is drawn toward the proton and this causes nucleophilic attack on the double bond. The role of the electrophile can also be played by metal cations, and the mercuric ion is the electrophile in several synthetically valuable procedures.13 The most commonly used reagent is mercuric acetate, but the trifluoroacetate, trifluoromethanesulfonate, or nitrate salts are more reactive and preferable in some applications. A general mechanism depicts a mercurinium ion as an intermediate.14 Such species can be detected by physical measurements when alkenes react with mercuric ions in nonnucleophilic solvents.15 The cation may be predominantly bridged or open, depending on the structure of the particular alkene. The addition is completed by attack of a nucleophile at the more-substituted carbon. The nucleophilic capture is usually the rate- and product-controlling step.13,16... [Pg.294]

Marchand and co-workers reported a synthetic route to TNAZ (18) involving a novel electrophilic addition of NO+ NO2 across the highly strained C(3)-N bond of 3-(bromomethyl)-l-azabicyclo[1.1.0]butane (21), the latter prepared as a nonisolatable intermediate from the reaction of the bromide salt of tris(bromomethyl)methylamine (20) with aqueous sodium hydroxide under reduced pressure. The product of this reaction, A-nitroso-3-bromomethyl-3-nitroazetidine (22), is formed in 10% yield but is also accompanied by A-nitroso-3-bromomethyl-3-hydroxyazetidine as a by-product. Isolation of (22) from this mixture, followed by treatment with a solution of nitric acid in trifluoroacetic anhydride, leads to nitrolysis of the ferf-butyl group and yields (23). Treatment of (23) with sodium bicarbonate and sodium iodide in DMSO leads to hydrolysis of the bromomethyl group and the formation of (24). The synthesis of TNAZ (18) is completed by deformylation of (24), followed by oxidative nitration, both processes achieved in one pot with an alkaline solution of sodium nitrite, potassium ferricyanide and sodium persulfate. This route to TNAZ gives a low overall yield and is not suitable for large scale manufacture. [Pg.266]

Beak and coworkers found the (—)-sparteine-complex of iV-Boc-Af-(p-methoxyphe-nyl)benzyllithium 244, obtained from 243 by deprotonation with n-BuLi/(—)-sparteine (11) in toluene, to be configurationally stable (equation 57) . On trapping 244 with different electrophiles, the substitution products 245 are formed with high ee. Efficient addition reactions with imines and aldehydes have also been reported. The p-methoxyphenyl residue is conveniently removed by treatment with cerinm ammoninm nitrate (CAN). [Pg.1100]

Step (1) is reminiscent of electrophilic addition to an alkene. Aromatic substitution differs in that the intermediate carbocation (a benzenonium ion) loses a cation (most often to give the substitution product, rather than adding a nucleophile to give the addition product. The benzenonium ion is a specific example of an arenonium ion, formed by electrophilic attack on an arene (Section 11.4). It is also called a sigma complex, because it arises by formation of a o-bond between E and the ring. See Fig. 11-1 for a typical enthalpy-reaction curve for the nitration of an arene. [Pg.215]

An attempt has been made to analyse whether the electrophilicity index is a reliable descriptor of the kinetic behaviour. Relative experimental rates of Friedel-Crafts benzylation, acetylation, and benzoylation reactions were found to correlate well with the corresponding calculated electrophilicity values. In the case of chlorination of various substituted ethylenes and nitration of toluene and chlorobenzene, the correlation was generally poor but somewhat better in the case of the experimental and the calculated activation energies for selected Markovnikov and anti-Markovnikov addition reactions. Reaction electrophilicity, local electrophilicity, and activation hardness were used together to provide a transparent picture of reaction rates and also the orientation of aromatic electrophilic substitution reactions. Ambiguity in the definition of the electrophilicity was highlighted.15... [Pg.318]

The analogy between imines and carbonyls was introduced earlier, and just as 1,3-dike-tonate complexes undergo electrophilic substitution reactions at the 2-position, so do their nitrogen analogues. Reactions of this type are commonly observed in macrocyclic ligands, and many examples are known. Electrophilic reactions ranging from nitration and Friedel-Crafts acylation to Michael addition have been described. Reactions of 1,3-diimi-nes and of 3-iminoketones are well known. The reactions are useful for the synthesis of derivatised macrocyclic complexes, as in the preparation of the nickel(n) complex of a nitro-substituted ligand depicted in Fig. 5-12. [Pg.95]

Nitration of fluoroolefins can be achieved by several methods. Widely studied thermal reaction of N204 with fluoroolefins has a radical mechanism, although the low temperature reaction of nitrogen dioxide with polyfluorinated vinyl ethers proceeds as electrophilic addition of nitrosonium nitrate NO+ N02 across the C=C bond [6] ... [Pg.70]

Aromatic compounds react mainly by electrophilic aromatic substitution, in which one or more ring hydrogens are replaced by various electrophiles. Typical reactions are chlorination, bromination, nitration, sulfonation, alkylation, and acylation (the last two are Friedel-Crafts reactions). The mechanism involves two steps addition of the electrophile to a ring carbon, to produce an intermediate benzenonium ion, followed by proton loss to again achieve the (now substituted) aromatic system. [Pg.61]

Deactivation against electrophilic attack accounts for the difficulty or failure of nitration, sulfonation and iV-oxidation of 1,2,4-triazoles proper. However, triazolate anions react readily with electrophilic reagents alkylation and acylation have received much attention but halogenation and addition reactions less. Systematic study of the formation and reactions of salts and metallic complexes is of recent origin. [Pg.744]

Electrophilic substitution, then, like electrophilic addition, is a stepwise process involving an intermediate carbonium ion. The two reactions differ, however, in the fate of the carbonium ion. While the mechanism of nitration is, perhaps, better established than the mechanisms for other aromatic substitution reactions, it seems clear that all these reactions follow the same course. [Pg.347]


See other pages where Electrophilic addition reactions nitration is mentioned: [Pg.39]    [Pg.195]    [Pg.938]    [Pg.188]    [Pg.177]    [Pg.554]    [Pg.332]    [Pg.32]    [Pg.25]    [Pg.573]    [Pg.166]    [Pg.592]    [Pg.1041]    [Pg.1059]    [Pg.177]    [Pg.592]    [Pg.492]    [Pg.2]    [Pg.166]    [Pg.1016]    [Pg.11]    [Pg.1156]    [Pg.25]    [Pg.338]    [Pg.170]    [Pg.264]   
See also in sourсe #XX -- [ Pg.643 , Pg.646 , Pg.667 ]




SEARCH



Addition reactions electrophilic

Electrophiles Addition reactions

Electrophilic nitration

Nitration reaction

© 2024 chempedia.info