Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic structure origin

Figure 17. Electronic structure origin of low temperature MCD features for the T2 and T3 centers in native laccase. Figure 17. Electronic structure origin of low temperature MCD features for the T2 and T3 centers in native laccase.
M.o. theory and the transition state treatment In 1942 Wheland proposed a simple model for the transition state of electrophilic substitution in which a pair of electrons is localised at the site of substitution, and the carbon atom at that site has changed from the sp to the sp state of hybridisation. Such a structure, originally proposed as a model for the transition state is now known to describe the (T-complexes which are intermediates in electrophilic substitutions... [Pg.131]

We recently proposed a new method referred to as RISM-SCF/MCSCF based on the ab initio electronic structure theory and the integral equation theory of molecular liquids (RISM). Ten-no et al. [12,13] proposed the original RISM-SCF method in 1993. The basic idea of the method is to replace the reaction field in the continuum models with a microscopic expression in terms of the site-site radial distribution functions between solute and solvent, which can be calculated from the RISM theory. Exploiting the microscopic reaction field, the Fock operator of a molecule in solution can be expressed by... [Pg.420]

One of the most efficient ways to treat this problem is to combine the ab initio MO method and the RISM theory, and this has been achieved by a slight modification of the original RISM-SCF method. Effective atomic charges in liquid water are determined such that the electronic structure and the liquid properties become self-consistent, and along the route of convergence the polarization effect can be naturally incorporated. [Pg.422]

We have extended the linear combination of Gaussian-type orbitals local-density functional approach to calculate the total energies and electronic structures of helical chain polymers[35]. This method was originally developed for molecular systems[36-40], and extended to two-dimensionally periodic sys-tems[41,42] and chain polymers[34j. The one-electron wavefunctions here are constructed from a linear combination of Bloch functions c>>, which are in turn constructed from a linear combination of nuclear-centered Gaussian-type orbitals Xylr) (in ihis case, products of Gaussians and the real solid spherical harmonics). The one-electron density matrix is given by... [Pg.42]

The original FMM has been refined by adjusting the accuracy of the multipole expansion as a function of the distance between boxes, producing the very Fast Multipole Moment (vFMM) method. Both of these have been generalized tc continuous charge distributions, as is required for calculating the Coulomb interactioi between electrons in a quantum description. The use of FMM methods in electronic structure calculations enables the Coulomb part of the electron-electron interaction h be calculated with a computational effort which depends linearly on the number of basi functions, once the system becomes sufficiently large. [Pg.80]

In a regime of strong interaction between the chains no optical coupling between the ground slate and the lowest excited state occurs. The absence of coupling, however, has a different origin. Indeed, below 7 A, the LCAO coefficients start to delocalize over the two chains and the wavefunclions become entirely symmetric below 5 A due to an efficient exchange of electrons between the chains. This delocalization of the wavcfunclion is not taken into account in the molecular exciton model, which therefore becomes unreliable at short chain separations. Analysis of the one-electron structure of the complexes indicates that the... [Pg.375]

Compounds of several different types might be formed by introduction of nitric oxide into complex ions. If the metal atom provides one of the electrons of the electron-pair bond, NO should assume the 02-like 82 structure. If both bond electrons come originally from NO (which then... [Pg.108]

The determination of values of interatomic distances in molecules has been found to provide much information regarding electronic structure, especially in the case of substances which resonate among two or more valence-bond structures. The interpretation of interatomic distances in terms of the types of bonds involved is made with use of an empirical function formulated originally for single bond-double bond resonance of the carbon-carbon bond.1 There are given in this... [Pg.657]

Borides, in contrast to carbides and nitrides, are characterized by an unusual structural complexity for both metal-rich and B-rich compositions. This complexity has its origin in the tendency of B atoms to form one- two-, or three-dimensional covalent arrangements and to show uncommon coordination numbers because of their large size (rg = 0.88 10 pm) and their electronic structure (deficiency in valence electrons). The structures of the transition-element borides are well established " . [Pg.123]

With these assignments at hand the analysis of the hyperfine shifts became possible. An Fe(III) in tetrahedral structures of iron-sulfur proteins has a high-spin electronic structure, with negligible magnetic anisotropy. The hyperfine shifts of the protons influenced by the Fe(III) are essentially Fermi contact in origin 21, 22). An Fe(II), on the other hand, has four unpaired electrons and there may be some magnetic anisotropy, giving rise to pseudo-contact shifts. In addition, there is a quintet state at a few hundred cm which may complicate the analysis of hyperfine shifts, but the main contribution to hyperfine shifts is still from the contact shifts 21, 22). [Pg.252]

The turnover frequency (TOP) based on surface-exposed atoms significantly increases with a decrease in the diameter of the gold particle from 5 nm [66]. This feature is unique to gold, because other noble metals usually show TOFs that decrease or remain the same with a decrease in the diameter [7]. The decrease in particle size gives rise to an increase in corner or edge and perimeter of NPs and change in electronic structure however, the origin of size effects on catalytic activity for CO oxidation is not clear. [Pg.67]


See other pages where Electronic structure origin is mentioned: [Pg.5]    [Pg.309]    [Pg.24]    [Pg.272]    [Pg.181]    [Pg.324]    [Pg.314]    [Pg.5]    [Pg.309]    [Pg.24]    [Pg.272]    [Pg.181]    [Pg.324]    [Pg.314]    [Pg.182]    [Pg.6]    [Pg.404]    [Pg.417]    [Pg.289]    [Pg.68]    [Pg.4]    [Pg.40]    [Pg.117]    [Pg.283]    [Pg.390]    [Pg.417]    [Pg.71]    [Pg.88]    [Pg.301]    [Pg.392]    [Pg.134]    [Pg.124]    [Pg.209]    [Pg.158]    [Pg.208]    [Pg.339]    [Pg.20]    [Pg.7]    [Pg.150]    [Pg.368]    [Pg.28]    [Pg.54]    [Pg.65]    [Pg.102]    [Pg.191]   


SEARCH



Electronic origin, nonlinear optical structures

Electronic origins

Origin structure

Structural origin

© 2024 chempedia.info