Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic spectroscopy selection rules

In XAS, the incident X-rays traverse through the sample. X-rays of appropriate energy are absorbed by the atoms and as a result a core electron is excited to unoccupied states above p- The decrease in the transmitted X-ray intensity is measured. In this spectroscopy, selection rules are rigorously obeyed and therefore the DOS of all symmetries must be considered to understand completely the electronic structure of the conduction band. The schematic of this X-ray excitation of a core level atom, in the one-electron approximation, is shown in Figure 1. In the one-electron approximation, the activity of one electron is considered at any instant, assuming all other electrons to be fixed. Because the incident X-rays traverse the whole sample, little surface information is obtained. [Pg.4625]

This spectrum is called a Raman spectrum and corresponds to the vibrational or rotational changes in the molecule. The selection rules for Raman activity are different from those for i.r. activity and the two types of spectroscopy are complementary in the study of molecular structure. Modern Raman spectrometers use lasers for excitation. In the resonance Raman effect excitation at a frequency corresponding to electronic absorption causes great enhancement of the Raman spectrum. [Pg.340]

We now turn to electronic selection rules for syimnetrical nonlinear molecules. The procedure here is to examme the structure of a molecule to detennine what synnnetry operations exist which will leave the molecular framework in an equivalent configuration. Then one looks at the various possible point groups to see what group would consist of those particular operations. The character table for that group will then pennit one to classify electronic states by symmetry and to work out the selection rules. Character tables for all relevant groups can be found in many books on spectroscopy or group theory. Ftere we will only pick one very sunple point group called 2 and look at some simple examples to illustrate the method. [Pg.1135]

A further technique exists for the determination of triplet energy levels. This technique, called electron impact spectroscopy, involves the use of inelastic scattering of low-energy electrons by collision with molecules. The inelastic collisions of the electrons with the molecules result in transfer of the electron energy to the molecule and the consequent excitation of the latter. Unlike electronic excitation by photons, excitation by electron impact is subject to no spin selection rule. Thus transitions that are spin and/or orbitally forbidden for photon excitation are totally allowed for electron impact excitation. [Pg.117]

For many years, investigations on the electronic structure of organic radical cations in general, and of polyenes in particular, were dominated by PE spectroscopy which represented by far the most copious source of data on this subject. Consequently, attention was focussed mainly on those excited states of radical ions which can be formed by direct photoionization. However, promotion of electrons into virtual MOs of radical cations is also possible, but as the corresponding excited states cannot be attained by a one-photon process from the neutral molecule they do not manifest themselves in PE spectra. On the other hand, they can be reached by electronic excitation of the radical cations, provided that the corresponding transitions are allowed by electric-dipole selection rules. As will be shown in Section III.C, the description of such states requires an extension of the simple models used in Section n, but before going into this, we would like to discuss them in a qualitative way and give a brief account of experimental techniques used to study them. [Pg.228]

Polymer films were produced by surface catalysis on clean Ni(100) and Ni(lll) single crystals in a standard UHV vacuum system H2.131. The surfaces were atomically clean as determined from low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Monomer was adsorbed on the nickel surfaces circa 150 K and reaction was induced by raising the temperature. Surface species were characterized by temperature programmed reaction (TPR), reflection infrared spectroscopy, and AES. Molecular orientations were inferred from the surface dipole selection rule of reflection infrared spectroscopy. The selection rule indicates that only molecular vibrations with a dynamic dipole normal to the surface will be infrared active [14.], thus for aromatic molecules the absence of a C=C stretch or a ring vibration mode indicates the ring must be parallel the surface. [Pg.84]

Infrared, Raman, microwave, and double resonance techniques turn out to offer nicely complementary tools, which usually can and have to be complemented by quantum chemical calculations. In both experiment and theory, progress over the last 10 years has been enormous. The relationship between theory and experiment is symbiotic, as the elementary systems represent benchmarks for rigorous quantum treatments of clear-cut observables. Even the simplest cases such as methanol dimer still present challenges, which can only be met by high-level electron correlation and nuclear motion approaches in many dimensions. On the experimental side, infrared spectroscopy is most powerful for the O—H stretching dynamics, whereas double resonance techniques offer selectivity and Raman scattering profits from other selection rules. A few challenges for accurate theoretical treatments in this field are listed in Table I. [Pg.41]

Accordingly, the selection rules for Raman and IR spectroscopy are different. In Raman spectroscopy, there must be a change in the molecule s polarizability upon excitation, whereas a change in dipole moment is required for IR. A dipole moment is the magnitude of the electronic force vector between the negative and positive charges or partial charges on a molecule. A permanent dipole moment exists in all polar mol-... [Pg.202]

Beyond such electronic symmetry analysis, it is also possible to derive vibrational and rotational selection rules for electronic transitions that are El allowed. As was done in the vibrational spectroscopy case, it is conventional to expand i j (R) in a power series about the equilibrium geometry of the initial electronic state (since this geometry is more characteristic of the molecular structure prior to photon absorption) ... [Pg.303]

Although the occupied orbitals are of main importance, since they are directly involved in the formation of the chemical bond, the unoccupied states also provide complementary information. In X-ray absorption spectroscopy (XAS), often denoted Near Edge X-ray Absorption Fine Structure (NEXAFS), we excite a core electron to the empty states above the Fermi level [3,4,13]. There is a close connection between XES and XAS where the former gives information on the occupied orbitals while the latter relates to the character and symmetry of the unoccupied levels. Both are governed by the dipole selection rule and the localized character of the core orbitals allows a simple atom-specific projection of the electronic structure the major difference is in the final states. In XAS the empty electronic states are probed... [Pg.60]

This result is tremendously useful, it not only leads to selection rules for vibrational spectroscopy but also, as was the case with electronic wavefunctions (see 8-2), allows us to predict from inspection of the character table the degeneracies and symmetries which are allowed for the fundamental vibrational wavefunctions of any particular molecule. [Pg.186]

Electric-quadrupole transition, 123,127 Electromagnetic radiation, 114-117. See also Radiation, electromagnetic Electromagnetic spectrum, 115 Electronic energy, 57,64,148 Electronic spectra, 130, 296-314 of diatomics, 298-306 and molecular structure, 311 of polyatomics, 71-72, 73, 75, 306-314 selection rules for, 297-301, 306-307 Electronic structure of molecules, 56-76 Electron spectroscopy for chemical analysis (ESCA), 319-320 Electron spin resonance (ESR), 130, 366-381... [Pg.245]

Recall that homonuclear diatomic molecules have no vibration-rotation or pure-rotation spectra due to the vanishing of the permanent electric dipole moment. For electronic transitions, the transition-moment integral (7.4) does not involve the dipole moment d hence electric-dipole electronic transitions are allowed for homonuclear diatomic molecules, subject to the above selection rules, of course. [The electric dipole moment d is given by (1.289), and should be distinguished from the electric dipole-moment operator d, which is given by (1.286).] Analysis of the vibrational and rotational structure of an electronic transition in a homonuclear diatomic molecule allows the determination of the vibrational and rotational constants of the electronic states involved, which is information that cannot be provided by IR or microwave spectroscopy. (Raman spectroscopy can also furnish information on the constants of the ground electronic state of a homonuclear diatomic molecule.)... [Pg.404]


See other pages where Electronic spectroscopy selection rules is mentioned: [Pg.168]    [Pg.189]    [Pg.232]    [Pg.56]    [Pg.1325]    [Pg.208]    [Pg.318]    [Pg.429]    [Pg.444]    [Pg.187]    [Pg.89]    [Pg.502]    [Pg.46]    [Pg.95]    [Pg.78]    [Pg.628]    [Pg.347]    [Pg.350]    [Pg.406]    [Pg.142]    [Pg.59]    [Pg.189]    [Pg.191]    [Pg.195]    [Pg.151]    [Pg.112]    [Pg.176]    [Pg.122]    [Pg.36]    [Pg.68]    [Pg.173]    [Pg.20]    [Pg.181]    [Pg.230]   
See also in sourсe #XX -- [ Pg.533 ]




SEARCH



18 Electron rule

Electronic selection rules

Selection rules

Spectroscopy selection rules

© 2024 chempedia.info