Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic nonadiabatic dynamics

Sun X, Wang H B and Miller W H 1998 Semiclassical theory of electronically nonadiabatic dynamics Results of a linearized approximation to the initial value representation J. Chem. Phys. 109 7064... [Pg.2330]

In the MQC mean-field trajectory scheme introduced above, all nuclear DoF are treated classically while a quantum mechanical description is retained only for the electronic DoF. This separation is used in most implementations of the mean-field trajectory method for electronically nonadiabatic dynamics. Another possibility to separate classical and quantum DoF is to include (in addition to the electronic DoF) some of the nuclear degrees of freedom (e.g., high frequency modes) into the quantum part of the calculation. This way, typically, an improved approximation of the overall dynamics can be obtained—albeit at a higher numerical cost. This idea is the basis of the recently proposed self-consistent hybrid method [201, 202], where the separation between classical and quantum DoF is systematically varied to improve the result for the overall quantum dynamics. For systems in the condensed phase with many nuclear DoF and a relatively smooth distribution of the electronic-vibrational coupling strength (e.g.. Model V), the separation between classical and quanmm can, in fact, be optimized to obtain numerically converged results for the overall quantum dynamics [202, 203]. [Pg.270]

M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun, and T. J. Martinez (2001) Comparison of full multiple spawning, trajectory surface hopping and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 115, p. 1172... [Pg.589]

Obviously, the BO or the adiabatic states only serve as a basis, albeit a useful basis if they are determined accurately, for such evolving states, and one may ask whether another, less costly, basis could be Just as useful. The electron nuclear dynamics (END) theory [1-4] treats the simultaneous dynamics of electrons and nuclei and may be characterized as a time-dependent, fully nonadiabatic approach to direct dynamics. The END equations that approximate the time-dependent Schrddinger equation are derived by employing the time-dependent variational principle (TDVP). [Pg.221]

The approximations defining minimal END, that is, direct nonadiabatic dynamics with classical nuclei and quantum electrons described by a single complex determinantal wave function constructed from nonoithogonal spin... [Pg.233]

In Chapter VI, Ohm and Deumens present their electron nuclear dynamics (END) time-dependent, nonadiabatic, theoretical, and computational approach to the study of molecular processes. This approach stresses the analysis of such processes in terms of dynamical, time-evolving states rather than stationary molecular states. Thus, rovibrational and scattering states are reduced to less prominent roles as is the case in most modem wavepacket treatments of molecular reaction dynamics. Unlike most theoretical methods, END also relegates electronic stationary states, potential energy surfaces, adiabatic and diabatic descriptions, and nonadiabatic coupling terms to the background in favor of a dynamic, time-evolving description of all electrons. [Pg.770]

Quantum mechanical effects—tunneling and interference, resonances, and electronic nonadiabaticity— play important roles in many chemical reactions. Rigorous quantum dynamics studies, that is, numerically accurate solutions of either the time-independent or time-dependent Schrodinger equations, provide the most correct and detailed description of a chemical reaction. While hmited to relatively small numbers of atoms by the standards of ordinary chemistry, numerically accurate quantum dynamics provides not only detailed insight into the nature of specific reactions, but benchmark results on which to base more approximate approaches, such as transition state theory and quasiclassical trajectories, which can be applied to larger systems. [Pg.2]

Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)... Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)...
Electron nuclear dynamics theory is a direct nonadiabatic dynamics approach to molecular processes and uses an electronic basis of atomic orbitals attached to dynamical centers, whose positions and momenta are dynamical variables. Although computationally intensive, this approach is general and has a systematic hierarchy of approximations when applied in an ab initio fashion. It can also be applied with semiempirical treatment of electronic degrees of freedom [4]. It is important to recognize that the reactants in this approach are not forced to follow a certain reaction path but for a given set of initial conditions the entire system evolves in time in a completely dynamical manner dictated by the interparticle interactions. [Pg.327]

Considering the semiclassical description of nonadiabatic dynamics, only the mapping approach [99, 100] and the equivalent formulation that is obtained by requantizing the classical electron analog model of Meyer and Miller [112] appear to be amenable to a numerical treatment via an initial-value representation [114, 116, 117, 121, 122]. Other semiclassical formulations such as Pechukas path-integral formulation [45] and the various connection... [Pg.249]

Finally, we consider the performance of the MFT method for nonadiabatic dynamics induced by avoided crossings of the respective potential energy surfaces. We start with the discussion of the one-mode model. Model IVa, describing ultrafast intramolecular electron transfer. The comparison of the MFT method (dashed line) with the quantum-mechanical results (full line) shown in Fig. 5 demonstrates that the MFT method gives a rather good description of the short-time dynamics (up to 50 fs) for this model. For longer times, however, the dynamics is reproduced only qualitatively. Also shown is the time evolution of the diabatic electronic coherence which, too, is... [Pg.271]

To summarize, the results presented for five representative examples of nonadiabatic dynamics demonstrate the ability of the MFT method to account for a qualitative description of the dynamics in case of processes involving two electronic states. The origin of the problems to describe the correct long-time relaxation dynamics as well as multi-state processes will be discussed in more detail in Section VI. Despite these problems, it is surprising how this simplest MQC method can describe complex nonadiabatic dynamics. Other related approximate methods such as the quantum-mechanical TDSCF approximation have been found to completely fail to account for the long-time behavior of the electronic dynamics (see Fig. 10). This is because the standard Hartree ansatz in the TDSCF approach neglects all correlations between the dynamical DoF, whereas the ensemble average performed in the MFT treatment accounts for the static correlation of the problem. [Pg.276]

Finally, we discuss applications of the ZPE-corrected mapping formalism to nonadiabatic dynamics induced by avoided crossings of potential energy surfaces. Figure 27 shows the diabatic and adiabatic electronic population for Model IVb, describing ultrafast intramolecular electron transfer. As for the models discussed above, it is seen that the MFT result (y = 0) underestimates the relaxation of the electronic population while the full mapping result (y = 1) predicts a too-small population at longer times. In contrast to the models... [Pg.320]

Let us investigate to what extent this simple classical approximation is able to describe the nonadiabatic dynamics exhibited by our model. To this end, we consider the diabatic electronic population probability defined in... [Pg.332]


See other pages where Electronic nonadiabatic dynamics is mentioned: [Pg.97]    [Pg.316]    [Pg.172]    [Pg.97]    [Pg.316]    [Pg.172]    [Pg.186]    [Pg.452]    [Pg.372]    [Pg.106]    [Pg.287]    [Pg.288]    [Pg.383]    [Pg.231]    [Pg.450]    [Pg.464]    [Pg.466]    [Pg.468]    [Pg.474]    [Pg.290]    [Pg.327]    [Pg.559]    [Pg.341]    [Pg.247]    [Pg.248]    [Pg.262]    [Pg.275]    [Pg.280]    [Pg.309]    [Pg.325]    [Pg.333]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Electron dynamics

Electronic nonadiabaticity

Nonadiabatic dynamics

© 2024 chempedia.info