Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transport chain tissue

Hydrogen sulfide inhibits mitochondrial cytochrome oxidase, resulting in disruption of the electron transport chain and impairing oxidative metabolism. Nervous and cardiac tissues, which have the highest oxygen demand (e.g., brain and heart), are especially sensitive to disruption of oxidative metabolism (Ammann 1986 Hall 1996). [Pg.119]

Oxidation is intimately linked to the activation of polycyclic aromatic hydrocarbons (PAH) to carcinogens (1-3). Oxidation of PAH in animals and man is enzyme-catalyzed and is a response to the introduction of foreign compounds into the cellular environment. The most intensively studied enzyme of PAH oxidation is cytochrome P-450, which is a mixed-function oxidase that receives its electrons from NADPH via a one or two component electron transport chain (10. Some forms of this enzyme play a major role in systemic metabolism of PAH (4 ). However, there are numerous examples of carcinogens that require metabolic activation, including PAH, that induce cancer in tissues with low mixed-function oxidase activity ( 5). In order to comprehensively evaluate the metabolic activation of PAH, one must consider all cellular pathways for their oxidative activation. [Pg.310]

Redox potentials were also used to arrange the electron carriers in their correct order. This procedure was applied to the cytochromes by Coolidge (1932). There were however serious difficulties. Electrochemical theory applies to substances in solution the values obtained are significantly affected by pH and the concentrations of the different components. Of the members of the electron transport chain only the substrates NAD+, NADP+, and cytochrome c are soluble. The other components were difficult to extract from tissue particles without altering their properties. Further, it was hard to determine their concentration and to decide on appropriate values for pH and oxygen concentration. Nevertheless, mainly from work by Ball (1938), at the time in Warburg s laboratory, an approximate order of redox potentials was drawn up ... [Pg.85]

All tissues except mature red blood cells are able to manufacture haem for use in the respiratory cytochrome proteins of the electron transport chain. However, the liver is an especially important site of haem synthesis because it (a) is a major organ of erythropoiesis in utero and (b) haem-containing cytochrome-P450 (CYP-450) enzymes play significant roles in hepatic detoxification of drugs, toxins and endogenous waste products (Section 6.4). [Pg.197]

The FADHj and NADH are oxidized in the electron transport chain, providing ATP. In musde and adipose tissue, the acetyl CoA enters the citric acid cyde. In liver, the ATP may be used for gluconeogenesis, and the acetyl CoA (which cannot be converted to glucose) stimulates gluco-neogenesis by activating pyruvate carboxylase. [Pg.226]

Marine organisms concentrate metals in their tissues and skeletal materials. Many of these trace metals are classified as micronutrients because they are required, albeit in small amounts, for essential metabolic functions. Some are listed in Table 11.4, illustrating the role of metals in the enzyme systems involved in glycolysis, the tricarboxylic acid cycle, the electron-transport chain, photosynthesis, and protein metabolism. These micronutrients are also referred to as essential metals and, as discussed later, have the potential to be biolimiting. [Pg.273]

Depletion of ATP is caused by many toxic compounds, and this will result in a variety of biochemical changes. Although there are many ways for toxic compounds to cause a depletion of ATP in the cell, interference with mitochondrial oxidative phosphorylation is perhaps the most common. Thus, compounds, such as 2,4-dinitrophenol, which uncouple the production of ATP from the electron transport chain, will cause such an effect, but will also cause inhibition of electron transport or depletion of NADH. Excessive use of ATP or sequestration are other mechanisms, the latter being more fully described in relation to ethionine toxicity in chapter 7. Also, DNA damage, which causes the activation of poly(ADP-ribose) polymerase (PARP), may lead to ATP depletion (see below). A lack of ATP in the cell means that active transport into, out of, and within the cell is compromised or halted, with the result that the concentration of ions such as Na+, K+, and Ca2+ in particular compartments will change. Also, various synthetic biochemical processes such as protein synthesis, gluconeogenesis, and lipid synthesis will tend to be decreased. At the tissue level, this may mean that hepatocytes do not produce bile efficiently and proximal tubules do not actively reabsorb essential amino acids and glucose. [Pg.219]

This type of effect can occur in all tissues and is caused by a metabolic inhibitor such as azide or cyanide, which inhibits the electron transport chain. Inhibition of one or more of the enzymes of the tricarboxylic acid cycle such as that caused by fluoroacetate (Fig. 6.7) also results in inhibition of cellular respiration (for more details of cyanide and fluoroacetate see chap. 7). [Pg.235]

The electron transport chain is present in the inner mitochondrial membrane and is the final common pathway by which electrons derived from different fuels of the body flow to oxygen. Electron transport and ATP synthesis by oxidative phosphorylation proceed continuously in all tissues that contain mitochondria. [Pg.73]

Figure 18-5 A current concept of the electron transport chain of mitochondria. Complexes I, III, and IV pass electrons from NADH or NADPH to 02, one NADH or two electrons reducing one O to HzO. This electron transport is coupled to the transfer of about 12 H+ from the mitochondrial matrix to the intermembrane space. These protons flow back into the matrix through ATP synthase (V), four H+ driving the synthesis of one ATP. Succinate, fatty acyl-CoA molecules, and other substrates are oxidized via complex II and similar complexes that reduce ubiquinone Q, the reduced form QH2 carrying electrons to complex III. In some tissues of some organisms, glycerol phosphate is dehydrogenated by a complex that is accessible from the intermembrane space. Figure 18-5 A current concept of the electron transport chain of mitochondria. Complexes I, III, and IV pass electrons from NADH or NADPH to 02, one NADH or two electrons reducing one O to HzO. This electron transport is coupled to the transfer of about 12 H+ from the mitochondrial matrix to the intermembrane space. These protons flow back into the matrix through ATP synthase (V), four H+ driving the synthesis of one ATP. Succinate, fatty acyl-CoA molecules, and other substrates are oxidized via complex II and similar complexes that reduce ubiquinone Q, the reduced form QH2 carrying electrons to complex III. In some tissues of some organisms, glycerol phosphate is dehydrogenated by a complex that is accessible from the intermembrane space.
Copper and Zinc in Aerobic Metabolism. Cytochrome oxidase, the terminal oxidase in the electron transport chain contains an atom of copper. On this enzyme the protons and electrons generated during oxidative metabolism combine with elemental oxygen to form water. During copper deficiency the tissue concentration of cytochrome oxidase is reduced. While the effects of lower cytochrome oxidase activity on exercise has not been described, it is likely that aerobic energy metabolism will be diminished. This effect of copper deficiency was first described in animals with myelin aplasls — the degeneration myelin (86). The oxidative process of phospholipid synthesis, a primary component of myelin, was depressed. Liver mitochondria had impaired respiratory activity (87). Cytochrome oxidase activity was also depressed in brain, heart and liver. [Pg.99]

Carbon monoxide poisoning interferes with transport to tissues and the interaction of with cytochromes, especially the cytochromes in the electron transport chain (ETC). [Pg.162]


See other pages where Electron transport chain tissue is mentioned: [Pg.411]    [Pg.124]    [Pg.307]    [Pg.75]    [Pg.90]    [Pg.91]    [Pg.233]    [Pg.110]    [Pg.185]    [Pg.603]    [Pg.215]    [Pg.10]    [Pg.400]    [Pg.962]    [Pg.1012]    [Pg.1033]    [Pg.118]    [Pg.355]    [Pg.84]    [Pg.112]    [Pg.93]    [Pg.179]    [Pg.203]    [Pg.83]    [Pg.470]    [Pg.501]    [Pg.644]    [Pg.246]    [Pg.623]    [Pg.1609]    [Pg.38]    [Pg.83]    [Pg.100]    [Pg.186]    [Pg.314]    [Pg.249]    [Pg.112]    [Pg.322]    [Pg.496]   
See also in sourсe #XX -- [ Pg.356 ]




SEARCH



Electron chain

Electron transporter

Electron transporting

Tissue transport

Transport chains

© 2024 chempedia.info