Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer Marcus model

Interfacial electron transfer, Marcus model inapplicability, 513 Interfacial parameter... [Pg.633]

The rate constant k for the electron exchange process can be modeled in terms of Marcus theory. In this approach electron transfer is modeled in terms of precursor and successor complexes. This can be done by writing... [Pg.22]

Figure C3.2.12. Experimentally observed electron transfer time in psec (squares) and theoretical electron transfer times (survival times, Tau a and Tau b) predicted by an extended Sumi-Marcus model. For fast solvents tire survival times are a strong Emction of tire characteristic solvent relaxation dynamics. For slower solvents tire electron transfer occurs tlirough tire motion of intramolecular degrees of freedom. From [451. Figure C3.2.12. Experimentally observed electron transfer time in psec (squares) and theoretical electron transfer times (survival times, Tau a and Tau b) predicted by an extended Sumi-Marcus model. For fast solvents tire survival times are a strong Emction of tire characteristic solvent relaxation dynamics. For slower solvents tire electron transfer occurs tlirough tire motion of intramolecular degrees of freedom. From [451.
Mandelbrot, on fractal surfaces, 52 Mao and Pickup, their work on the oxidation of polypyrrole, 587 Marcus model, inapplicability for interfacial electron transfer, 513 Mechanical breakdown model for passivity, 236... [Pg.634]

In this chapter, we wiU review electrochemical electron transfer theory on metal electrodes, starting from the theories of Marcus [1956] and Hush [1958] and ending with the catalysis of bond-breaking reactions. On this route, we will explore the relation to ion transfer reactions, and also cover the earlier models for noncatalytic bond breaking. Obviously, this will be a tour de force, and many interesting side-issues win be left unexplored. However, we hope that the unifying view that we present, based on a framework of model Hamiltonians, will clarify the various aspects of this most important class of electrochemical reactions. [Pg.33]

In the (semi-)classical models of ETR (Marcus the Russian school), redox orbitals of reactants overlap at a close separation, followed by swift electron transfer. The activated complex, considered in equilibrium with the reactants, consists of these overlapping orbitals. In the tunneling model, the electron penetrates... [Pg.187]

The first attempt to describe the dynamics of dissociative electron transfer started with the derivation from existing thermochemical data of the standard potential for the dissociative electron transfer reaction, rx r.+x-,12 14 with application of the Butler-Volmer law for electrochemical reactions12 and of the Marcus quadratic equation for a series of homogeneous reactions.1314 Application of the Marcus-Hush model to dissociative electron transfers had little basis in electron transfer theory (the same is true for applications to proton transfer or SN2 reactions). Thus, there was no real justification for the application of the Marcus equation and the contribution of bond breaking to the intrinsic barrier was not established. [Pg.123]

As with the Marcus-Hush model of outer-sphere electron transfers, the activation free energy, AG, is a quadratic function of the free energy of the reaction, AG°, as depicted by equation (7), where the intrinsic barrier free energy (equation 8) is the sum of two contributions. One involves the solvent reorganization free energy, 2q, as in the Marcus-Hush model of outer-sphere electron transfer. The other, which represents the contribution of bond breaking, is one-fourth of the bond dissociation energy (BDE). This approach is... [Pg.123]

FIGURE 1.13. Free-energy profiles in outer-sphere electron transfer according to the Butler-Volmer approximation (a) and to the Marcus-Hush model (b). [Pg.31]

When electron transfer is forced to take place at a large distance from the electrode by means of an appropriate spacer, the reaction quickly falls within the nonadiabatic limit. H is then a strongly decreasing function of distance. Several models predict an exponential decrease of H with distance with a coefficient on the order of 1 A-1.39 The version of the Marcus-Hush model presented so far is simplified in the sense that it assumed that only the electronic states of the electrode of energy close or equal to the Fermi level are involved in the reaction.31 What are the changes in the model predictions brought about by taking into account that all electrode electronic states are actually involved is the question that is examined now. The kinetics... [Pg.38]

When conformational change and electron transfer are concerted, the structural change may be treated as an internal reorganization factor in the electron transfer dynamics. This is the A, term of the Marcus-Hush model (Section 1.4.2 see also Section 1.4.4 for experimental examples). The model is applicable as long as the conformational changes are not so strong as to invalidate the harmonic approximation. [Pg.163]

The coordinate pertaining to solvent reorganization, z, is the same fictitious charge number as already considered in the Hush-Marcus model of outer-sphere electron transfer (Section 1.4.2), and so is the definition of 2q [equation (1.27)] and the difference between the Hush and Marcus estimation of this parameter. The coordinated describing the cleavage of the bond is the bond length, y, referred to its equilibrium value in the reactant, yRX. Db is the bond dissociation energy and the shape factor ft is defined as... [Pg.188]

This equation, based on the Marcus model, therefore gives us a relationship between the kinetics (kEr) and the thermodynamic driving force (AG°) of the electron-transfer process. Analysis of the equation predicts that one of three distinct kinetic regions will exist, as shown in Figure 6.24, depending on the driving force of the process. [Pg.114]

Fig. 1 The Marcus model of intramolecular electron transfer, involving two colliding spheres of charges Zi and Z2 and radii r, and r2. Fig. 1 The Marcus model of intramolecular electron transfer, involving two colliding spheres of charges Zi and Z2 and radii r, and r2.
The theoretical aspects of electron transfer mechanisms in aqueous solution have received considerable attention in the last two decades. The early successes of Marcus Q, 2), Hush (3, 4), and Levich (5) have stimulated the development of a wide variety of more detailed models, including those based on simple transition state theory, as well as more elaborate semi-clas-sical and quantum mechanical models (6-12). [Pg.255]

One may wonder whether a purely harmonic model is always realistic in biological systems, since strongly unharmonic motions are expected at room temperature in proteins [30,31,32] and in the solvent. Marcus has demonstrated that it is possible to go beyond the harmonic approximation for the nuclear motions if the temperature is high enough so that they can be treated classically. More specifically, he has examined the situation in which the motions coupled to the electron transfer process include quantum modes, as well as classical modes which describe the reorientations of the medium dipoles. Marcus has shown that the rate expression is then identical to that obtained when these reorientations are represented by harmonic oscillators in the high temperature limit, provided that AU° is replaced by the free energy variation AG [33]. In practice, tractable expressions can be derived only in special cases, and we will summarize below the formulae that are more commonly used in the applications. [Pg.11]


See other pages where Electron transfer Marcus model is mentioned: [Pg.795]    [Pg.285]    [Pg.65]    [Pg.537]    [Pg.319]    [Pg.285]    [Pg.390]    [Pg.390]    [Pg.415]    [Pg.69]    [Pg.667]    [Pg.308]    [Pg.190]    [Pg.120]    [Pg.209]    [Pg.483]    [Pg.123]    [Pg.159]    [Pg.4]    [Pg.668]    [Pg.439]    [Pg.35]    [Pg.33]    [Pg.57]    [Pg.58]    [Pg.187]    [Pg.189]    [Pg.439]    [Pg.53]    [Pg.156]    [Pg.5]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Electron transfer Marcus-Hush model

Electron transfer models

Electronic models

Marcus

Marcus model

Marcus model of electron transfer

The Marcus-Hush Model of Electron Transfer

Transfer model

© 2024 chempedia.info