Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer Marcus-Hush model

The first attempt to describe the dynamics of dissociative electron transfer started with the derivation from existing thermochemical data of the standard potential for the dissociative electron transfer reaction, rx r.+x-,12 14 with application of the Butler-Volmer law for electrochemical reactions12 and of the Marcus quadratic equation for a series of homogeneous reactions.1314 Application of the Marcus-Hush model to dissociative electron transfers had little basis in electron transfer theory (the same is true for applications to proton transfer or SN2 reactions). Thus, there was no real justification for the application of the Marcus equation and the contribution of bond breaking to the intrinsic barrier was not established. [Pg.123]

As with the Marcus-Hush model of outer-sphere electron transfers, the activation free energy, AG, is a quadratic function of the free energy of the reaction, AG°, as depicted by equation (7), where the intrinsic barrier free energy (equation 8) is the sum of two contributions. One involves the solvent reorganization free energy, 2q, as in the Marcus-Hush model of outer-sphere electron transfer. The other, which represents the contribution of bond breaking, is one-fourth of the bond dissociation energy (BDE). This approach is... [Pg.123]

FIGURE 1.13. Free-energy profiles in outer-sphere electron transfer according to the Butler-Volmer approximation (a) and to the Marcus-Hush model (b). [Pg.31]

When electron transfer is forced to take place at a large distance from the electrode by means of an appropriate spacer, the reaction quickly falls within the nonadiabatic limit. H is then a strongly decreasing function of distance. Several models predict an exponential decrease of H with distance with a coefficient on the order of 1 A-1.39 The version of the Marcus-Hush model presented so far is simplified in the sense that it assumed that only the electronic states of the electrode of energy close or equal to the Fermi level are involved in the reaction.31 What are the changes in the model predictions brought about by taking into account that all electrode electronic states are actually involved is the question that is examined now. The kinetics... [Pg.38]

When conformational change and electron transfer are concerted, the structural change may be treated as an internal reorganization factor in the electron transfer dynamics. This is the A, term of the Marcus-Hush model (Section 1.4.2 see also Section 1.4.4 for experimental examples). The model is applicable as long as the conformational changes are not so strong as to invalidate the harmonic approximation. [Pg.163]

In other words, under these restrictive conditions, outer sphere electron-transfer reactions obeying the Marcus-Hush model are typical examples where the Hammond-Leffler postulate and the reactivity-selectivity principle (see, for example, Pross, 1977, and references cited therein, for the definition of these notions) are expected to apply. [Pg.14]

The Marcus Inverted Region (MIR) is that part of the function of rate constant versus free energy where a chemical reaction becomes slower as it becomes more exothermic. It has been observed in many thermal electron transfer processes such as neutralization of ion pairs, but not for photoinduced charge separation between neutral molecules. The reasons for this discrepancy have been the object of much controversy in recent years, and the present article gives a critical summary of the theoretical basis of the MIR as well as of the explanations proposed for its absence in photoinduced electron transfer. The role of the solvent receives special attention, notably in view of the possible effects of dielectric saturation in the field of ions. The relationship between the MIR and the theories of radiationless transitions is a topic of current development, although in the Marcus-Hush Model electron transfer is treated as a thermally activated process. [Pg.96]

The importance of carbon-halogen bond cleavage for synthetic and environmental apphcations prompted several studies to tmder-stand the reaction mechanism, a work mainly done by Saveant s group, adopting the general concepts introduced by the Marcus-Hush model [12], The key step of halogenated compound reduction is the so-called dissociative electron transfer (DET) ... [Pg.1399]

In this chapter, we wiU review electrochemical electron transfer theory on metal electrodes, starting from the theories of Marcus [1956] and Hush [1958] and ending with the catalysis of bond-breaking reactions. On this route, we will explore the relation to ion transfer reactions, and also cover the earlier models for noncatalytic bond breaking. Obviously, this will be a tour de force, and many interesting side-issues win be left unexplored. However, we hope that the unifying view that we present, based on a framework of model Hamiltonians, will clarify the various aspects of this most important class of electrochemical reactions. [Pg.33]

The coordinate pertaining to solvent reorganization, z, is the same fictitious charge number as already considered in the Hush-Marcus model of outer-sphere electron transfer (Section 1.4.2), and so is the definition of 2q [equation (1.27)] and the difference between the Hush and Marcus estimation of this parameter. The coordinated describing the cleavage of the bond is the bond length, y, referred to its equilibrium value in the reactant, yRX. Db is the bond dissociation energy and the shape factor ft is defined as... [Pg.188]

The theoretical aspects of electron transfer mechanisms in aqueous solution have received considerable attention in the last two decades. The early successes of Marcus Q, 2), Hush (3, 4), and Levich (5) have stimulated the development of a wide variety of more detailed models, including those based on simple transition state theory, as well as more elaborate semi-clas-sical and quantum mechanical models (6-12). [Pg.255]

The forbidden retro-[ls -I- 2s]-cycloaddition can now be treated using a simple curve-crossing model analagous to the Marcus-Hush theory of electron-transfer [11]. The ground state at the quadricyclane-like geometry is the... [Pg.5]

The Marcus treatment uses a classical statistical mechanical approach to calculate the activation energy required to surmount the barrier. It assumes a weakly adiabatic electron transfer process and non-equilibrium dielectric polarization of the solvent (continuum) as the source of activation. This model also considers the vibrational contributions of the inner solvation sphere. The Hush treatment considers ion-dipole and ligand field concepts in the treatment of inner coordination sphere contributions to the energy of activation [55, 56]. [Pg.54]

The energy curves in Figure 22 are closely related to the Marcus-Hush theory for electron transfer. The formalism we employ emphasizes a dipole model for the solute solvent interaction, i.e., an Onsager cavity model. However, a Born charge model based on ion solvation as something in between [135] would be essentially equivalent because we do not attempt to calculate Bop and Bor but rather determine them empirically. [Pg.45]

The semi-classical extension of electron transfer theory evolved from models developed by Landau, Zener, Marcus, and Hush [3,6]. The semi-classical Marcus-Hush... [Pg.24]


See other pages where Electron transfer Marcus-Hush model is mentioned: [Pg.123]    [Pg.33]    [Pg.187]    [Pg.189]    [Pg.12]    [Pg.28]    [Pg.56]    [Pg.101]    [Pg.33]    [Pg.40]    [Pg.12]    [Pg.28]    [Pg.1206]    [Pg.921]    [Pg.30]    [Pg.424]    [Pg.1223]    [Pg.1205]    [Pg.28]    [Pg.38]    [Pg.4]    [Pg.35]    [Pg.23]    [Pg.51]    [Pg.62]    [Pg.204]    [Pg.334]    [Pg.6]    [Pg.30]    [Pg.1050]    [Pg.38]   
See also in sourсe #XX -- [ Pg.33 , Pg.34 , Pg.35 , Pg.36 ]

See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Electron transfer Marcus model

Electron transfer models

Electronic models

Marcus

Marcus model

Marcus-Hush model

The Marcus-Hush Model of Electron Transfer

Transfer model

© 2024 chempedia.info