Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron spin echo envelope modulation ESEEM

Advanced EPR techniques such as CW and pulsed ENDOR, electron spin-echo envelope modulation (ESEEM), and two-dimensional (2D)-hyperfine sublevel correlation spectroscopy (HYSCORE) have been successfully used to examine complexation and electron transfer between carotenoids and the surrounding media in which the carotenoid is located. [Pg.168]

Y. Deligiannakis, M. Louloudi and N. Hadjiliadis, Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers, Coord. Chem. Rev., 2000, 204, 1. [Pg.164]

Since the phenoxyls possess an S = ground state, they have been carefully studied by electron paramagnetic spectroscopy (EPR) and related techniques such as electron nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM). These powerful and very sensitive techniques are ideally suited to study the occurrence of tyrosyl radicals in a protein matrix (1, 27-30). Careful analysis of the experimental data (hyperfine coupling constants) provides experimental spin densities at a high level of precision and, in addition, the positions of these tyrosyls relative to other neighboring groups in the protein matrix. [Pg.155]

We do not know exactly where the hydrogen binds at the active site. We would not expect it to be detectable by X-ray diffraction, even at 0.1 nm resolution. EPR (Van der Zwaan et al. 1985), ENDOR (Fan et al. 1991b) and electron spin-echo envelope modulation (ESEEM) (Chapman et al. 1988) spectroscopy have detected hyperfine interactions with exchangeable hydrous in the NiC state of the [NiFe] hydrogenase, but have not so far located the hydron. It could bind to one or both metal ions, either as a hydride or H2 complex. Transition-metal chemistry provides many examples of hydrides and H2 complexes (see, for example. Bender et al. 1997). These are mostly with higher-mass elements such as osmium or ruthenium, but iron can form them too. In order to stabilize the compounds, carbonyl and phosphine ligands are commonly used (Section 6). [Pg.178]

Electron Nuclear Double Resonance (ENDOR) and Electron Spin-Echo Envelope Modulation (ESEEM)... [Pg.129]

Electron nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) are two of a variety of pulsed EPR techniques that are used to study paramagnetic metal centers in metalloenzymes. The techniques are discussed in Chapter 4 of reference la and will not be discussed in any detail here. The techniques can define electron-nuclear hyperfine interactions too small to be resolved within the natural width of the EPR line. For instance, as a paramagnetic transition metal center in a metalloprotein interacts with magnetic nuclei such as H, H, P, or these... [Pg.129]

The three-pulse electron spin-echo envelope modulation (ESEEM) technique is particularly sensitive for detecting hyperfine couplings to nuclei with a weak nuclear moment, such as 14N. It has been used to probe the coordination state of nickel in two hydrogenases from M. tkermoautotrophicum, strain AH (56). One of these enzymes contains FAD and catalyzes the reduction of F420 (7,8-dimethyl-8-hydroxy-5-deazaflavin), while the other contains no FAD and has so far only been shown to reduce artificial redox agents such as methyl viologen. [Pg.311]

Electron Spin Echo Envelope Modulation (ESEEM)... [Pg.228]

A prototypical example of a molecular probe used extensively to study the mineral adsorbent-solution interface is the ESR spin-probe, Cu2+ (Sposito, 1993), whose spectroscopic properties are sensitive to changes in coordination environment. Since water does not interfere significantly with Cu11 ESR spectra, they may be recorded in situ for colloidal suspensions. Detailed, molecular-level information about coordination and orientation of both inner- and outer-sphere Cu2+ surface complexes has resulted from ESR studies of both phyllosilicates and metal oxyhydroxides. In addition, ESR techniques have been combined with closely related spectroscopic methods, like electron-spin-echo envelope modulation (ESEEM) and electron-nuclear double resonance (ENDOR), to provide complementary information about transition metal ion behaviour at mineral surfaces (Sposito, 1993). The level of sophistication and sensitivity of these kinds of surface speciation studies is increasing continually, such that the heterogeneous colloidal particles in soils can be investigated ever more accurately. [Pg.248]

Valuable spectroscopic studies on the dithiolene chelated to Mo in various enzymes have been enhanced by the knowledge of the structure from X-ray diffraction. Plagued by interference of prosthetic groups—heme, flavin, iron-sulfur clusters—the majority of information has been gleaned from the DMSO reductase system. The spectroscopic tools of X-ray absorption spectroscopy (XAS), electronic ultraviolet/visible (UV/vis) spectroscopy, resonance Raman (RR), MCD, and various electron paramagnetic resonance techniques [EPR, electron spin echo envelope modulation (ESEEM), and electron nuclear double resonance (ENDOR)] have been particularly effective probes of the metal site. Of these, only MCD and RR have detected features attributable to the dithiolene unit. Selected results from a variety of studies are presented below, chosen because their focus is the Mo-dithiolene unit and organized according to method rather than to enzyme or type of active site. [Pg.515]

Previous lower-frequency electron spin echo envelope modulation (ESEEM) studies showed a histidine nitrogen interaction with the Mn cluster in the S2 state, but the amplitude and resolution of the spectra were relatively poor at these low frequencies. With the intermediate frequency instruments we are much closer to the exact cancellation limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. We will report the results on 14N and 15N labeled PSII at these two frequencies, along with simulations constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral determination of the histidine ligation to the cluster in the S2 state. [Pg.59]

Wamcke, K., Babcock, G. T., and McCracken, J., 1994, Structure of the YD tyrosine radical in photosystem II as revealed by H electron spin echo envelope modulation (ESEEM) spectroscopic analysis of hydrogen hyperfine interactions. J. Am. Chem. Soc. 116 7332n 7340. [Pg.443]


See other pages where Electron spin echo envelope modulation ESEEM is mentioned: [Pg.63]    [Pg.163]    [Pg.93]    [Pg.109]    [Pg.24]    [Pg.243]    [Pg.289]    [Pg.68]    [Pg.245]    [Pg.304]    [Pg.257]    [Pg.195]    [Pg.146]    [Pg.146]    [Pg.35]    [Pg.83]    [Pg.5]    [Pg.68]    [Pg.304]    [Pg.125]    [Pg.208]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



ESEEM (electron spin-echo

ESEEM envelope modulation

Echo envelope

Echo envelope modulation

Echo modulation

Electron spin echo

Electron spin echo envelope ESEEM)

Electron spin echo modulation

Electron spin-echo envelope modulation

Envelope modulation

Modulated Spin-Echo

Modulated echoes

Modulation Spin-Echo)

Spin echo envelope modulation

© 2024 chempedia.info