Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-protonation steps

Examples of the lader include the adsorption or desorption of species participating in the reaction or the participation of chemical reactions before or after the electron transfer step itself One such process occurs in the evolution of hydrogen from a solution of a weak acid, HA in this case, the electron transfer from the electrode to die proton in solution must be preceded by the acid dissociation reaction taking place in solution. [Pg.603]

The mechanism includes two single electron transfers (steps 1 and 3) and two proton transfers (steps 2 and 4) Experimental evidence indicates that step 2 is rate determining and it is believed that the observed trans stereochemistry reflects the dis tribution of the two stereoisomeric alkenyl radical intermediates formed in this step... [Pg.377]

At this point, special mention37 should be made of the behaviour of highly conjugated ethylenic sulphones in weakly acidic media. For example, in the case when R1 =Ph (Z isomer), a fairly stable anion radical was obtained in dry DMF. However, either in aprotic (consecutive two one-electron transfer) or in protic media (ECE process, occurrence of the protonation step on anion radical), C—S bond cleavage is observed. The formation of the corresponding olefins by C—S bond cleavage may occur in high yield, and is nearly quantitative when R1 = H and R2 = Ph for an electrolysis conducted in... [Pg.1023]

The half-wave potentials of (FTF4)Co2-mediated O2 reduction at pH 0-3 shifts by — 60 mV/pH [Durand et ah, 1983], which indicates that the turnover-determining part of the catalytic cycle contains a reversible electron transfer (ET) and a protonation, or two reversible ETs and two protonation steps. In contrast, if an irreversible ET step were present, the pH gradient would be 60/( + a) mV/pH, where n is the number of electrons transferred in redox equilibria prior to the irreversible ET and a is the transfer coefficient of the irreversible ET. The —60 mV/pH slope is identical to that manifested by simple Ee porphyrins (see Section 18.4.1). The turnover rate of ORR catalysis by (ETE4)Co2 was reported to be proportional to the bulk O2 concentration [Collman et ah, 1994], suggesting that the catalyst is not saturated with O2. [Pg.674]

Only three steps of the proposed mechanism (Fig. 18.20) could not be carried out individually under stoichiometric conditions. At pH 7 and the potential-dependent part of the catalytic wave (>150 mV vs. NHE), the —30 mV/pH dependence of the turnover frequency was observed for both Ee/Cu and Cu-free (Fe-only) forms of catalysts 2, and therefore it requires two reversible electron transfer steps prior to the turnover-determining step (TDS) and one proton transfer step either prior to the TDS or as the TDS. Under these conditions, the resting state of the catalyst was determined to be ferric-aqua/Cu which was in a rapid equilibrium with the fully reduced ferrous-aqua/Cu form (the Fe - and potentials were measured to be within < 20 mV of each other, as they are in cytochrome c oxidase, resulting in a two-electron redox equilibrium). This first redox equilibrium is biased toward the catalytically inactive fully oxidized state at potentials >0.1 V, and therefore it controls the molar fraction of the catalytically active metalloporphyrin. The fully reduced ferrous-aqua/Cu form is also in a rapid equilibrium with the catalytically active 5-coordinate ferrous porphyrin. As a result of these two equilibria, at 150 mV (vs. NHE), only <0.1%... [Pg.681]

The structure of the products is determined by the site of protonation of the radical anion intermediate formed after the first electron transfer step. In general, ERG substituents favor protonation at the ortho position, whereas EWGs favor protonation at the para position.215 Addition of a second electron gives a pentadienyl anion, which is protonated at the center carbon. As a result, 2,5-dihydro products are formed with alkyl or alkoxy substituents and 1,4-products are formed from EWG substituents. The preference for protonation of the central carbon of the pentadienyl anion is believed to be the result of the greater 1,2 and 4,5 bond order and a higher concentration of negative charge at C(3).216 The reduction of methoxybenzenes is of importance in the synthesis of cyclohexenones via hydrolysis of the intermediate enol ethers. [Pg.437]

Reduction of acetylenes can be done with sodium in ammonia,220 lithium in low molecular weight amines,221 or sodium in HMPA containing /-butanol as a proton source,222 all of which lead to the A-alkene. The reaction is assumed to involve successive electron transfer and protonation steps. [Pg.439]

The third primary intermediate in the oxidation chemistry of a-tocopherol, and the central species in this chapter, is the orr/zo-quinone methide 3. In contrast to the other two primary intermediates 2 and 4, it can be formed by quite different ways (Fig. 6.4), which already might be taken as an indication of the importance of this intermediate in vitamin E chemistry. o-QM 3 is formed, as mentioned above, from chromanoxylium cation 4 by proton loss at C-5a, or by a further single-electron oxidation step from radical 2 with concomitant proton loss from C-5a. Its most prominent and most frequently employed formation way is the direct generation from a-tocopherol by two-electron oxidation in inert media. Although in aqueous or protic media, initial... [Pg.166]

Although the reduction potentials argue for thymine, as the most easily reducable base in protic solvents like water, subsequent protonation reactions need to be considered as well. The coupling of single electron reduction with a subsequent protonation step will strongly affect the ease of single electron reduction. Table 2 contains the pKa-values of some nucleobases in their reduced and neutral states [37]. It is clear that the thymine radical anion, due to its rather neutral pKa-value of about 7 is unlikely to become pro-tonated either by water or by the adenine counter base in the DNA strand. [Pg.202]

The number of protons extracted from the film during coloration depends on the width of the potential step under consideration. As can be seen in the formulation of Fig. 26 an additional valence state change occurs at 1.25 Vsce giving rise to another proton extraction. The second proton exchange may explain the observation by Michell et al. [91] who determined a transfer of two electrons (protons) during coloration. Equation (5) is well supported by XPS measurements of the Ir4/ and Ols levels of thick anodic iridium oxide films emersed at different electrode potentials in the bleached and coloured state. Deconyolution of the Ols level of an AIROF into the contribution of oxide (O2-, 529.6 eV) hydroxide, (OH, 531.2 eV) and probably water (533.1 eV) indicates that oxide species are formed during anodization (coloration) on the expense of hydroxide species. The bleached film appears to be pure hydroxide (Fig. 27). [Pg.110]

In reactions [5]-[8] pure electron addition occurs, but in reaction [9] addition and dissociative electron capture giving loss of MeO occur concurrently. Furthermore, CH3 radicals are also formed, together, presumably, with (Me0)2P02 this being an alternative dissociative route. Reaction [10] occurs in methanol, there being no clear sign of the parent anion, P(0Me)3 . This protonation step is also accompanied by dissociative electron capture to give P(0Me)2 radicals. [Pg.176]

A relatively low potential, one-electron oxidation is observed (Equation (72)), followed above pH 2.2 by a two-electron oxidation, two-proton step (Equation (73)) and a one-electron oxidation (Equation (74)). In more acidic solutions a direct three-electron oxidation occurs leading also to the [Ruv O Ruv]4+ species. In various studies the Rulv O Rulv, RuIV-0 Ruv, and Ruv O Ruv species have been considered as the catalytically active form. Although these species have been characterized by resonance Raman and EPR spectroscopies,475,476,480 no definitive conclusion about the mechanism involved in the catalysis can be drawn and the question remains largely open. [Pg.497]

The current estimate for the number of ATPs made per 2 electrons is actually about 2.5. This is because of the uncertainties in the number of protons pumped out at each electron transfer step. This affects ATP yields from glucose (30 instead of 36), so be sure you ask your professor which to use. [Pg.189]

The observation of O-protonation with the attendant formal reduction of the carbonyl carbon suggested to us that further protonation steps might lead to methane or methanol formation. In this process the necessary electrons for the reduction would be provided by the metal cluster, as indicated schematically in equation 21. After considerable experimentation with reactants... [Pg.20]

The influence of / ara-substituents on the benzamide and benzyloxyl side chains upon the pre-equilibrium protonation step is likely to be negligible considering their remoteness from the site of protonation and their electronic influence must rather impact upon the rate determining N-O bond heterolysis step. Para-substituents on the leaving group should impact upon both the protonation and bond heterolysis steps. [Pg.64]

Es electron transfer steps, H s proton transfer steps. The numbers on the vertical arrows are the standard potentials the nuber on the horizontal arrows are the pKa values. [Pg.310]

Photochemical addition of ammonia and primary amines to aryl olefins (equation 42) can be effected by irradiation in the presence of an electron acceptor such as dicyanoben-zene (DCNB)103-106. The proposed mechanism for the sensitised addition to the stilbene system is shown in Scheme 7. Electron transfer quenching of DCNB by t-S (or vice versa) yields the t-S cation radical (t-S)+ Nucleophilic addition of ammonia or the primary amine to (t-S)+ followed by proton and electron transfer steps yields the adduct and regenerates the electron transfer sensitizer. The reaction is a variation of the electron-transfer sensitized addition of nucleophiles to terminal arylolefins107,108. [Pg.704]

One possibility, the ECEC path, i.e. alternating electron transfer and protonation steps, for the mechanism of reduction of nitrosobenzene to phenylhydroxylamine was discussed in Section II.A.l. It is pointed out there that this conversion might take place by a number of different paths. Laviron explored this question69. He found that the mechanism is CECE in acidic media and ECEC in basic media and ECCE at intermediate pH. [Pg.854]

Addition of one electron to the ketone gives a ketyl ( C-O-), and addition of another electron gives a carbanion, which is protonated by EtOH. Workup then gives the reduced compound. Note how curved arrows are not used to show the movement of electrons in electron transfer steps. [Pg.134]

Two possible mechanisms are proposed. Primarily the enol radical cation is formed. It either undergoes deprotonation because of its intrinsic acidity, producing an a-carbonyl radical, which is oxidized in a further one-electron oxidation step to an a-carbonyl cation. Cyclization leads to an intermediate cyclo-hexadienyl cation. On the other hand, cyclization of the enol radical cation can be faster than deprotonation, producing a distonic radical cation, which, after proton loss and second one-electron oxidation, leads to the same cyclo-hexadienyl cation intermediate as in the first reaction pathway. After a 1,2-methyl shift and further deprotonation, the benzofuran is obtained. Since the oxidation potentials of the enols are about 0.3-0.5 V higher than those of the corresponding a-carbonyl radicals, the author prefers the first reaction pathway via a-carbonyl cations [112]. Under the same reaction conditions, the oxidation of 2-mesityl-2-phenylethenol 74 does not lead to benzofuran but to oxazole 75 in yields of up to 85 %. The oxazole 75 is generated by nucleophilic attack of acetonitrile on the a-carbonyl cation or the proceeding enol radical cation. [Pg.89]


See other pages where Electron-protonation steps is mentioned: [Pg.22]    [Pg.22]    [Pg.16]    [Pg.14]    [Pg.140]    [Pg.640]    [Pg.673]    [Pg.4]    [Pg.136]    [Pg.71]    [Pg.329]    [Pg.264]    [Pg.840]    [Pg.841]    [Pg.1129]    [Pg.65]    [Pg.90]    [Pg.91]    [Pg.239]    [Pg.16]    [Pg.233]    [Pg.87]    [Pg.350]    [Pg.269]    [Pg.261]    [Pg.75]    [Pg.575]    [Pg.76]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Electron proton

Electron protonation

Electron stepping

© 2024 chempedia.info