Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron paramagnetic resonance structures

J.K. Hurst, T.M. Loehr, J.T. Curnutte, and H. Rosen, Resonance Raman and electron paramagnetic resonance structural investigations of neutrophil cytochrome b55g, /. Biol Chem. 266 1627 (1991). [Pg.283]

Electron spin resonance (or electron paramagnetic resonance) is now a well-established analytical technique, which also offers a unique probe into the details of molecular structure. The energy levels involved are very close together and reflect essentially the properties of a single electronic state split by a small perturbation. [Pg.308]

Electron paramagnetic resonance spectroscopy (HER), also called electron spin resonance spectroscopy (ESR), may be used for direct detection and conformational and structural characterization of paramagnetic species. Good introductions to F.PR have been provided by Fischer8 and I.effler9 and most books on radical chemistry have a section on EPR. EPR detection limits arc dependent on radical structure and the signal complexity. However, with modern instrumentation, radical concentrations > 1 O 9 M can be detected and concentrations > I0"7 M can be reliably quantified. [Pg.15]

Electron spin is the basis of the experimental technique called electron paramagnetic resonance (EPR), which is used to study the structures and motions of molecules and ions that have unpaired electrons. This technique is based on detecting the energy needed to flip an electron between its two spin orientations. Like Stern and Gerlach s experiment, it works only with ions or molecules that have an unpaired electron. [Pg.155]

Local Structure of the Eu2+ Impurity. From the experimental perspective, the doping of lanthanide ions into solid state materials can be probed by different instrumental technics such as nuclear magnetic resonance (NMR),44 extended X-ray absorption fine structure (EXAFS),45,46 or electron paramagnetic resonance (EPR),47 which instead of giving a direct clue of the local geometry offers only data that can be corroborated to it. From the theoretical point of view,... [Pg.2]

In general, several spectroscopic techniques have been applied to the study of NO, removal. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) are currently used to determine the surface composition of the catalysts, with the aim to identify the cationic active sites, as well as their coordinative environment. [Pg.98]

The X-ray structure of zinc naphthalocyanate has been determined with Zn—N bond lengths of 1.983(4) A.829 Pentanuclear complexes with a zinc phthalocyanine core and four ruthenium subunits linked via a terpyridyl ligand demonstrate interaction between the photoactive and the redox active components of the molecule. The absorbance and fluorescence spectra showed considerable variation with the ruthenium subunits in place.830 Tetra-t-butylphthalocyaninato zinc coordinated by nitroxide radicals form excited-state phthalocyanine complexes and have been studied by time-resolved electron paramagnetic resonance.831... [Pg.1220]

The crystallographic structure of rubredoxin from Clostridium pasteurianum at 2.5 A, a resolution sufficient to reveal the sequence of several of the bulky amino acid side chains, shows the iron coordinated to two pairs of cysteine residues located rather near the termini of the polypeptide chain (Fig. 1). A related rubredoxin, with a three times larger molecular weight, from Pseudomonas oleovorans is believed to bind iron in a similar fashion. This conclusion is based on physical probes, especially electron paramagnetic resonance spectroscopy, all of which indicate that the iron is in each case situated in a highly similar environment however, the proteins display some specificity in catalytic function. [Pg.154]

Lagerstedt, J.O., Budamagunta, M.S., Oda, M.N., and Voss, J.C. 2007. Electron paramagnetic resonance spectroscopy of site-directed spin labels reveals the structural heterogeneity in the N-terminal domain of ApoA-I in solution. The Journal of Biological Chemistry 282 9143-9149. [Pg.236]

The description theoretical study of defects frequently refers to some computation of defect electronic structure i.e., a solution of the Schrodin-ger equation (Pantelides, 1978 Bachelet, 1986). The goal of such calculations is normally to complement or guide the corresponding experimental study so that the defect is either properly identified or otherwise better understood. Frequently, the experimental study suffices to identify the basic structure of the defect this is particularly true when the system is EPR (electron paramagnetic resonance) active. However, if the computational method properly simulates the defect, we are provided with a wealth of additional information that can be used to reveal some of the more basic and general features of many-electron defect systems and defect reactions. [Pg.527]

Introduce instrumental techniques used in analysis of the bioinorganic systems I will lecture on (Chapter 3 Instrumental and Computer-Based Methods). Typically, these would be electron paramagnetic resonance (EPR) and Mossbauer spectroscopies not often covered in undergraduate instrumental analysis courses plus X-ray diffraction and NMR techniques used for structural analyses of metalloproteins and their small molecule model compounds. [Pg.370]

Electron paramagnetic resonance (EPR) spectroscopy is yet another diagnostic tool for the detection of isomorphous substitution of Ti. Its sensitivity is very high, and investigations can be performed with samples even with very low contents of paramagnetic species. The spectra and g parameters are sensitive to the local structure and associated molecular distortions. Hence, it is an ideal tool to characterize Ti in titanosilicates. Ti in the + 4 oxidation state in titanosilicates is diamagnetic and hence EPR-silent. Upon contacting with CO or H2 at elevated... [Pg.44]

Electron paramagnetic resonance (EPR) and NMR spectroscopy are quite similar in their basic principles and in experimental techniques. They detect different phenomena and thus yield different information. The major use of EPR spectroscopy is in the detection of free radicals which are uniquely characterised by their magnetic moment that arises from the presence of an unpaired electron. Measurement of a magnetic property of a material containing free radicals, like its magnetic susceptibility, provides the concentration of free radicals, but it lacks sensitivity and cannot reveal the structure of the radicals. Electron paramagnetic resonance spectroscopy is essentially free from these defects. [Pg.84]

McBride and co-workers have studied extensively the reactions of such free-radical precursors as azoalkanes and diacyl peroxides (246). By employing a variety of techniques, including X-ray structure analysis, electron paramagnetic resonance (EPR), and product studies, and comparing reactions in the crystal and in fluid and rigid solvents, they have been able to obtain extremely detailed pictures of the solid-state processes. We will describe here some of the types of lattice control they have elucidated, and the mechanisms that they suggest limit the efficacy of topochemical control. [Pg.203]

Figure 1.1 The electiomagnetic spectrum, showing the different microscopic excitation sources and the spectroscopies related to the different spectral regions. XRF, X-Ray Fluorescence AEFS, Absorption Edge Fine Structure EXAFS, Extended X-ray Absorption Fine Structure NMR, Nuclear Magnetic Resonance EPR, Electron Paramagnetic Resonance. The shaded region indicates the optical range. Figure 1.1 The electiomagnetic spectrum, showing the different microscopic excitation sources and the spectroscopies related to the different spectral regions. XRF, X-Ray Fluorescence AEFS, Absorption Edge Fine Structure EXAFS, Extended X-ray Absorption Fine Structure NMR, Nuclear Magnetic Resonance EPR, Electron Paramagnetic Resonance. The shaded region indicates the optical range.
This section will cover other experimental approaches that are less frequently applied (yet are not insignificant) toward the structural elucidation of stationary-phase surfaces. This includes electron paramagnetic resonance (EPR), small angle neutron... [Pg.275]


See other pages where Electron paramagnetic resonance structures is mentioned: [Pg.61]    [Pg.61]    [Pg.1590]    [Pg.105]    [Pg.228]    [Pg.667]    [Pg.194]    [Pg.291]    [Pg.294]    [Pg.174]    [Pg.190]    [Pg.76]    [Pg.99]    [Pg.3]    [Pg.126]    [Pg.240]    [Pg.232]    [Pg.30]    [Pg.27]    [Pg.28]    [Pg.371]    [Pg.562]    [Pg.153]    [Pg.239]    [Pg.11]    [Pg.490]    [Pg.291]    [Pg.10]    [Pg.86]    [Pg.246]    [Pg.64]    [Pg.299]    [Pg.4]    [Pg.72]    [Pg.133]    [Pg.269]   
See also in sourсe #XX -- [ Pg.748 ]




SEARCH



Electron paramagnetic

Electron paramagnetic resonance

Electronic paramagnetic resonance

Paramagnetic resonance

Resonance electronic structures

Resonance structures

© 2024 chempedia.info