Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron impact ionization cross sections quantum mechanical

Quantum mechanical and selected semiclassical and semiempirical methods for the calculation of electron impact ionization cross sections are described and their successes and limitations noted. Experimental methods for the measurement of absolute and relative ionization cross sections are also described in some detail. Four theoretical methods, one quantum mechanical and three semiclassical, have been used to calculate cross sections for the total ionization of the inert gases and small molecules and the results compared with experimental measurements reported in the literature. Two of the theoretical methods, one quantum mechanical and one semiclassical, have been applied to the calculation of orientation-dependent electron impact ionization cross sections and the results compared with recent experiments. [Pg.320]

Due to the complexity of a full quantum mechanical treatment of electron impact ionization, or even a partial wave approximation, for all but relatively simple systems, a large number of semiempirical and semiclassical formulae have been developed. These often make basic assumptions which can limit their range of validity to fairly small classes of atomic or molecular systems. The more successful approaches apply to broad classes of systems and can be very useful for generating cross sections in the absence of good experimental results. The success of such calculations to reproduce experimentally determined cross sections can also give insight into the validity of the approximations and assumptions on which the methods are based. [Pg.327]

Figure 19-4. Open and solid symbols are the measured quantum yields (events per incident electron) for the induction of single strand breaks (SSB) (a) and double strand breaks (DSB) (b) in DNA films by 4-100 eV electron impact. The solid curves through the data are guides to the eye. The dotted curves symbolize general electron energy dependence of the cross sections for various nonresonant damage mechanisms, such as ionization cross sections, normalized here to the measured strand break yields at lOOeV... Figure 19-4. Open and solid symbols are the measured quantum yields (events per incident electron) for the induction of single strand breaks (SSB) (a) and double strand breaks (DSB) (b) in DNA films by 4-100 eV electron impact. The solid curves through the data are guides to the eye. The dotted curves symbolize general electron energy dependence of the cross sections for various nonresonant damage mechanisms, such as ionization cross sections, normalized here to the measured strand break yields at lOOeV...
The collinear model (Eq. (15)) has been successfully used in the semiclassical description of many bound and resonant states in the quantum mechanical spectrum of real helium [49-52] and plays an important role for the study of states of real helium in which both electrons are close to the continuum threshold [53, 54]. The quantum mechanical version of the spherical or s-wave model (Eq. (16)) describes the Isns bound states of real helium quite well [55]. The energy dependence of experimental total cross sections for electron impact ionization is reproduced qualitatively in the classical version of the s-wave model [56] and surprisingly well quantitatively in a quantum mechanical calculation [57]. The s-wave model is less realistic close to the break-up threshold = 0, where motion along the Wannier ridge, = T2, is important. [Pg.116]


See other pages where Electron impact ionization cross sections quantum mechanical is mentioned: [Pg.322]    [Pg.325]    [Pg.158]    [Pg.55]    [Pg.33]    [Pg.324]    [Pg.328]    [Pg.404]    [Pg.393]    [Pg.303]    [Pg.408]   
See also in sourсe #XX -- [ Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 ]




SEARCH



Cross ionization

Cross section electronic

Electron cross section

Electron impact

Electron impact ionization

Electron impact ionization cross sections

Electron mechanisms

Electronic crossing

Electrons quantum mechanics

Impact ionization

Impact mechanism

Ionization cross section

Ionization mechanisms

Quantum electronics

Quantum mechanics electronic

Quantum-mechanical electronic

Section 2 Mechanisms

© 2024 chempedia.info