Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational electron-energy-loss spectroscopy

HREELS High-resolution electron energy-loss spectroscopy [129, 130] Same as EELS Identification of adsorbed species through their vibrational energy spectrum... [Pg.314]

H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York, 1982. [Pg.743]

Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice. The diffraction pattern can be used as a means of stnictural detenuination, as in FEED. Electrons scatter inelastically by inducing electronic and vibrational excitations in the surface region. These losses fonu the basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an iimer-shell, or core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used to induce stimulated desorption, as described in section Al.7.5.6. [Pg.305]

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

EELS Electron energy loss spectroscopy The loss of energy of low-energy electrons due to excitation of lattice vibrations. Molecular vibrations, reaction mechanism... [Pg.1852]

Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks. Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks.
Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

In recent years there is a growing interest in the study of vibrational properties of both clean and adsorbate covered surfaces of metals. For several years two complementary experimental methods have been used to measure the dispersion relations of surface phonons on different crystal faces. These are the scattering of thermal helium beams" and the high-resolution electron-energy-loss-spectroscopy. ... [Pg.151]

The vibrations of molecular bonds provide insight into bonding and stmcture. This information can be obtained by infrared spectroscopy (IRS), laser Raman spectroscopy, or electron energy loss spectroscopy (EELS). IRS and EELS have provided a wealth of data about the stmcture of catalysts and the bonding of adsorbates. IRS has also been used under reaction conditions to follow the dynamics of adsorbed reactants, intermediates, and products. Raman spectroscopy has provided exciting information about the precursors involved in the synthesis of catalysts and the stmcture of adsorbates present on catalyst and electrode surfaces. [Pg.184]

Ibach H. Mills, D.L. "Electron Energy Loss Spectroscopy and Surface Vibrations", Academic Press New York, 1982. [Pg.403]

Ibach, H. Hills, D. L., "Electron Energy Loss Spectroscopy and Surface Vibration" Academic Press, New York 1982. [Pg.420]

Vibrational spectroscopy provides the most definitive means of identifying the surface species arising from molecular adsorption and the species generated by surface reaction, and the two techniques that are routinely used for vibrational studies of molecules on surfaces are Infrared (IR) Spectroscopy and Electron Energy Loss Spectroscopy (HREELS) (q.v.). [Pg.41]

E.A.V. Ebsworth, Edinburgh University Has Vibrational Electron Energy Loss spectroscopy any relevance in this context ... [Pg.453]

Vibrations in molecules or in solid lattices are excited by the absorption of photons (infrared spectroscopy), or by the scattering of photons (Raman spectroscopy), electrons (electron energy loss spectroscopy) or neutrons (inelastic neutron scattering). If the vibration is excited by the interaction of the bond with a wave... [Pg.216]

As noted in the introduction, vibrations in molecules can be excited by interaction with waves and with particles. In electron energy loss spectroscopy (EELS, sometimes HREELS for high resolution EELS) a beam of monochromatic, low energy electrons falls on the surface, where it excites lattice vibrations of the substrate, molecular vibrations of adsorbed species and even electronic transitions. An energy spectrum of the scattered electrons reveals how much energy the electrons have lost to vibrations, according to the formula ... [Pg.238]

Figure 8.14 High-resolution electron energy loss spectroscopy (HREELS) and low-energy electron diffraction of CO adsorbed on a Rh(l 11) surface, along with structure models. The HREELS spectra show the C-O and metal-CO stretch vibrations of linear and threefold CO on rhodium (from R.Linke etal. [56]). Figure 8.14 High-resolution electron energy loss spectroscopy (HREELS) and low-energy electron diffraction of CO adsorbed on a Rh(l 11) surface, along with structure models. The HREELS spectra show the C-O and metal-CO stretch vibrations of linear and threefold CO on rhodium (from R.Linke etal. [56]).

See other pages where Vibrational electron-energy-loss spectroscopy is mentioned: [Pg.203]    [Pg.584]    [Pg.307]    [Pg.1325]    [Pg.1328]    [Pg.34]    [Pg.442]    [Pg.52]    [Pg.362]    [Pg.366]    [Pg.199]    [Pg.392]    [Pg.508]    [Pg.512]    [Pg.116]    [Pg.6]    [Pg.149]    [Pg.195]    [Pg.3]    [Pg.8]    [Pg.67]    [Pg.87]    [Pg.344]    [Pg.117]    [Pg.2]    [Pg.156]    [Pg.106]   
See also in sourсe #XX -- [ Pg.472 ]




SEARCH



Electron Energy-Loss

Electron Energy-Loss Spectroscopy

Electron loss

Electron loss spectroscopy

Electron vibrations

Energy vibrational

Loss Spectroscopy

Spectroscopy energy loss

Vibration /vibrations spectroscopy

Vibration energy

Vibrational electronics

Vibrational spectroscopy high-resolution electron-energy-loss

© 2024 chempedia.info