Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron correlation methods spin contamination

AMI Basis Sets Correlation Consistent Sets Complete Active Space Self-consistent Field (CASSCF) Second-order Perturbation Theory (CASPT2) Configuration Interaction Coupled-cluster Theory Density Functional Theory (DFT), Hartree-Fock (HF) and the Self-consistent Field Diradicals Electronic Wavefunctions Analysis G2 Theory M0ller-Plesset Perturbation Theory Natural Bond Orbital Methods Spin Contamination. [Pg.194]

As a final note, be aware that Hartree-Fock calculations performed with small basis sets are many times more prone to finding unstable SCF solutions than are larger calculations. Sometimes this is a result of spin contamination in other cases, the neglect of electron correlation is at the root. The same molecular system may or may not lead to an instability when it is modeled with a larger basis set or a more accurate method such as Density Functional Theory. Nevertheless, wavefunctions should still be checked for stability with the SCF=Stable option. ... [Pg.36]

By including electron correlation in the wave function the UHF method introduces more biradical character into the wave function than RHF. The spin contamination part is also purely biradical in nature, i.e. a UHF treatment in general will overestimate the biradical character. Most singlet states are well described by a closed-shell wave function near the equilibrium geometry, and in those cases it is not possible to generate a UHF solution which has a lower energy than the RHF. There are systems, however, for which this does not hold. An example is the ozone molecule, where two types of resonance structure can be drawn. Figure 4.8. [Pg.115]

From the above it should be clear that UHF wave functions which are spin contaminated (more than a few percent deviation of (S ) from the theoretical value of S S + 1)) have disadvantages. For closed-shell systems an RHF procedure is therefore normally preferred. For open-shell systems, however, the UHF method has been heavily used. It is possible to use an ROHF type wave function for open-shell systems, but this leads to computational procedures which are somewhat more complicated than for the UHF case when electron correlation is introduced. [Pg.116]

The CBS methods of Petersson and coworkers (22,25,25-30) extrapolate the basis set and add empirical terms to extrapolate to experiment. Two especially powerful versions of the CBS approach are CBS-4 (30) and CBS-Q (30). For CBS-Q, the empirical terms are based on the overlap matrix and the spin contamination (which arises in some partial treatments of the electron correlation). CBS-4 also includes these terms plus a term based on the number of electrons in the system. [Pg.156]

The second approach to treating nondynamical correlation has an air of the ostrich about it ignore the spin symmetry of the wave function and use unrestricted Haxtree-Fock (UHF) theory as the single configuration description [7]. Since the UHF wave function comprises one spin-orbital for each electron, a molecular UHF wave function should dissociate to atomic UHF wave functions, for example. This is certainly not the case for spin-restricted Hartree-Fock (RHF) molecules and atoms in general. And there is an attractive simplicity about UHF — no active orbitals to identify, and so forth. However, where nondynamical correlation would be important in an RHF-based treatment, the UHF method will suffer from severe spin-contamination, while where nondynamical correlation is not important the RHF solution may be lower in energy than any broken-symmetry UHF solution, so potential curves and surfaces may have steps or kinks where the spin symmetry is broken in the UHF treatment. [Pg.334]

UHF Methods. A major drawback of closed-shell SCF orbitals is that whilst electrons of the same spin are kept apart by the Pauli principle, those of opposite spin are not accounted for properly. The repulsion between paired electrons in spin orbitals with the same spatial function is underestimated and this leads to the correlation error which multi-determinant methods seek to rectify. Some improvement could be obtained by using a wavefunction where electrons of different spins are placed in orbitals with different spatial parts. This is the basis of the UHF method,40 where two sets of singly occupied orbitals are constructed instead of the doubly occupied set. The drawback is of course that the UHF wavefunction is not a spin eigenfunction, and so does not represent a true spectroscopic state. There are two ways around the problem one can apply spin projection operators either before minimization or after. Both have their disadvantages, and the most common procedure is to apply a single spin annihilator after minimization,41 arguing that the most serious spin contaminant is the one of next higher multiplicity to the one of interest. [Pg.84]

Several empirical corrections are added to the resulting energies in the CBS methods to remove the systematic errors in the calculations (see Table 10). The CBS-Q method contains a two-electron correction term similar in spirit to the higher level correction used in G2 theory, a spin correction term to account for errors resulting from spin contamination in UHF wavefunctions for open-shell systems, and a correction to the sodium atom to account for core-valence correlation effects. The CBS-4 and CBS-q methods also contain a one-electron... [Pg.175]

The electronic structure methods are based primarily on two basic approximations (1) Born-Oppenheimer approximation that separates the nuclear motion from the electronic motion, and (2) Independent Particle approximation that allows one to describe the total electronic wavefunction in the form of one electron wavefunc-tions i.e. a Slater determinant [26], Together with electron spin, this is known as the Hartree-Fock (HF) approximation. The HF method can be of three types restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF) and restricted open Hartree-Fock (ROHF). In the RHF method, which is used for the singlet spin system, the same orbital spatial function is used for both electronic spins (a and (3). In the UHF method, electrons with a and (3 spins have different orbital spatial functions. However, this kind of wavefunction treatment yields an error known as spin contamination. In the case of ROHF method, for an open shell system paired electron spins have the same orbital spatial function. One of the shortcomings of the HF method is neglect of explicit electron correlation. Electron correlation is mainly caused by the instantaneous interaction between electrons which is not treated in an explicit way in the HF method. Therefore, several physical phenomena can not be explained using the HF method, for example, the dissociation of molecules. The deficiency of the HF method (RHF) at the dissociation limit of molecules can be partly overcome in the UHF method. However, for a satisfactory result, a method with electron correlation is necessary. [Pg.4]

UHF case when electron correlation is introduced. The main problem with the UHF method is the spin contamination, and there have truncated Cl are not. The lack of size extensivity is the reason why CISD recovers less and less electron correlation as the systems grow larger. [Pg.66]

Another significant advantage is that DFT methods based on unrestricted determinants (analogously to UHF, Section 3.7) for open-shell systems are not very prone to spin contamination , i.e. (S ), is normally close to S S + 1) (see also Sections 4.4 and 11.5.3). This is basicly a consequence of electron correlation being included in the determinantal wave function ... [Pg.102]


See other pages where Electron correlation methods spin contamination is mentioned: [Pg.2]    [Pg.5]    [Pg.276]    [Pg.363]    [Pg.30]    [Pg.9]    [Pg.146]    [Pg.116]    [Pg.118]    [Pg.122]    [Pg.131]    [Pg.189]    [Pg.6]    [Pg.8]    [Pg.234]    [Pg.574]    [Pg.598]    [Pg.88]    [Pg.53]    [Pg.179]    [Pg.73]    [Pg.222]    [Pg.873]    [Pg.115]    [Pg.116]    [Pg.122]    [Pg.131]    [Pg.104]    [Pg.116]    [Pg.118]    [Pg.124]    [Pg.134]    [Pg.154]    [Pg.203]    [Pg.209]    [Pg.16]    [Pg.55]   


SEARCH



Contamination methods

Correlated electrons

Correlation electron

Correlation methods

Correlative methods

Electron Methods

Electron correlation methods

Electronic correlations

Spin correlations

Spinning methods

© 2024 chempedia.info