Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemically induced electron polarization

B1.16 Chemically-induced nuclear and electron polarization (CIDNP and CIDEP)... [Pg.1590]

Pedersen J B and Freed J H 1973 Theory of chemically induced dynamic electron polarization. I J. [Pg.1619]

Wong S K, Hutchinson D A and Wan J K S 1973 Chemically induced dynamic electron polarization. II. A general theory for radicals produced by photochemical reactions of excited triplet carbonyl compounded. Chem. Phys. 58 985-9... [Pg.1620]

Blattler C, Jent F and Paul H 1990 A novel radical-triplet pair mechanism for chemically induced electron polarization (CIDEP) of free radicals in solution Chem. Phys. Lett. 166 375-80... [Pg.1620]

VI. Chemically Induced Dynamic Electron Spin Polarization (CIDBP)... [Pg.53]

The first example of chemically induced multiplet polarization was observed on treatment of a solution of n-butyl bromide and n-butyl lithium in hexane with a little ether to initiate reaction by depolymerizing the organometallic compound (Ward and Lawler, 1967). Polarization (E/A) of the protons on carbon atoms 1 and 2 in the 1-butene produced was observed and taken as evidence of the correctness of an earlier suggestion (Bryce-Smith, 1956) that radical intermediates are involved in this elimination. Similar observations were made in the reaction of t-butyl lithium with n-butyl bromide when both 1-butene and isobutene were found to be polarized. The observations were particularly significant because multiplet polarization could not be explained by the electron-nuclear cross-relaxation theory of CIDNP then being advanced to explain net polarization (Lawler, 1967 Bargon and Fischer, 1967). [Pg.110]

Chain processes, free radical, in aliphatic systems involving an electron transfer reaction, 23,271 Charge density-NMR chemical shift correlation in organic ions, 11,125 Chemically induced dynamic nuclear spin polarization and its applications, 10, 53 Chemiluminescence of organic compounds, 18,187... [Pg.336]

Further evidence for the formation of alkene radical cations derives from the work of Giese, Rist, and coworkers who observed a chemically induced dynamic nuclear polarization (CIDNP) effect on the dihydrofuran 6 arising from fragmentation of radical 5 and electron transfer from the benzoyl radical within the solvent cage (Scheme 6) [67]. [Pg.19]

Both CIDNP and ESR techniques were used to study the mechanism for the photoreduction of 4-cyano-l-nitrobenzene in 2-propanol5. Evidence was obtained for hydrogen abstractions by triplet excited nitrobenzene moieties and for the existence of ArNHO, Ai N( )211 and hydroxyl amines. Time-resolved ESR experiments have also been carried out to elucidate the initial process in the photochemical reduction of aromatic nitro compounds6. CIDEP (chemically induced dynamic electron polarization) effects were observed for nitrobenzene anion radicals in the presence of triethylamine and the triplet mechanism was confirmed. [Pg.750]

Time-resolved laser flash ESR spectroscopy generates radicals with nonequilibrium spin populations and causes spectra with unusual signal directions and intensities. The signals may show absorption, emission, or both and be enhanced as much as 100-fold. Deviations from Boltzmann intensities, first noted in 1963, are known as chemically induced dynamic electron polarization (CIDEP). Because the splitting pattern of the intermediate remains unaffected, the CIDEP enhancement facilitates the detection of short-lived radicals. A related technique, fluorescence detected magnetic resonance (FDMR) offers improved time resolution and its sensitivity exceeds that of ESR. The FDMR experiment probes short-lived radical ion pairs, which form reaction products in electronically excited states that decay radiatively. ... [Pg.213]

From Eq, (1) it is clear that a model of crystal polarization that is adequate for the description of the piezoelectric and pyroelectric properties of the P-phase of PVDF must include an accurate description of both the dipole moment of the repeat unit and the unit cell volume as functions of temperature and applied mechanical stress or strain. The dipole moment of the repeat unit includes contributions from the intrinsic polarity of chemical bonds (primarily carbon-fluorine) owing to differences in electron affinity, induced dipole moments owing to atomic and electronic polarizability, and attenuation owing to the thermal oscillations of the dipole. Previous modeling efforts have emphasized the importance of one more of these effects electronic polarizability based on continuum dielectric theory" or Lorentz field sums of dipole lattices" static, atomic level modeling of the intrinsic bond polarity" atomic level modeling of bond polarity and electronic and atomic polarizability in the absence of thermal motion. " The unit cell volume is responsive to the effects of temperature and stress and therefore requires a model based on an expression of the free energy of the crystal. [Pg.196]

A related technique is called chemically induced dynamic electron polarization (CIDEP). For a review, see Hore Joslin McLauchlan Chem. Soc. Rev, 1979, 8, 29-61. [Pg.187]

Chemically induced dynamic nuclear polarization is a spectroscopic technique that takes advantage of the coupling between electron and nuclear spins to detect products of radical recombinations by nuclear resonance. It is suited to investigation of the dynamics of radical processes, particularly the events just preceding radical recombinations. First observed in 1967 by Bargon and Fischer32 and independently by Ward and Lawler,33 the phenomenon consists of... [Pg.470]

The photochemistry of benzaldehyde (90% 13C=0), 519, deoxybenzoin (99%) 13C=0), 521, and / -chloro benzoin (99% 13C=0), 522, in cyclohexane-Dn solution has been studied633 by spectroscopic techniques, such as XH chemically induced dynamic nuclear634 or electron polarization635 (CIDNP/CIDEP) or dynamic nuclear polarization636 (DNP). In all these cases the formation of benzaldehyde-D with emissive 13C=0 polarization has been observed and the results rationalized by intermolecular hydrogen (deuterium) abstraction by the photoexcited ketones from the solvent molecules and by reactions of cage-escaped radicals (equations 303-308), Benzoin, 520, is formed also. [Pg.1075]

The complex quantity, y6br = e (y(3)r) + i Im (x r), represents the nuclear response of the molecules. The induced polarization is resonantly enhanced when the Raman shift wp — ws matches the frequency Qr of a Raman-active molecular vibration (Fig. 6.1A). Therefore, y(3)r provides the intrinsic vibrational contrast mechanism in CRS-based microscopies. The nonresonant term y6bnr represents the electronic response of both the one-photon and the two-photon electronic transitions [30]. Typically, near-infrared laser pulses are used to prevent the effect of two-photon electronic resonances. With input laser pulse frequencies away from electronic resonances, y(3)nr is independent of frequency and is a real quantity. It is important to realize that the nonresonant contribution to the total nonlinear polarization is simply a source for an unspecific background signal, which provides no chemical contrast in some of the CRS microscopies. While CARS detection can be significantly effected by the nonresonant contribution y6bnr [30], SRS detection is inherently insensitive to it [27, 29]. As will be discussed in detail in Sects. 6.3 and 6.4, this has major consequences for the image contrast mechanism of CARS and SRS microscopy, respectively. [Pg.114]

Time-Resolved Chemically Induced Dynamic Electron Polarization and Optical Emission Studies... [Pg.99]


See other pages where Chemically induced electron polarization is mentioned: [Pg.374]    [Pg.1590]    [Pg.670]    [Pg.162]    [Pg.476]    [Pg.31]    [Pg.352]    [Pg.266]    [Pg.278]    [Pg.132]    [Pg.179]    [Pg.275]    [Pg.106]    [Pg.189]    [Pg.156]    [Pg.1084]    [Pg.246]    [Pg.670]    [Pg.293]   
See also in sourсe #XX -- [ Pg.11 , Pg.58 ]




SEARCH



Chemical Induced Dynamic Electron Polarization,

Chemically induced

Chemically induced dynamic electron polarization

Chemically induced dynamic electron polarization CIDEP)

Chemically induced dynamic electron polarization technique

Chemically induced dynamic electron spin polarization

Chemically induced dynamic nuclear polarization electron spin resonance

Chemically induced electron polarization CIDEP)

Chemically polar

Electron chemically induced

Electron polarization

Electronic chemicals

Electronic magnetic moments, chemically induced dynamic nuclear polarization

Induced polarization

Polarity induced

Polarization chemical

Polarization electronic

Radical pair mechanism, chemically induced dynamic electron polarization

Time-resolved chemically induced dynamic electron polarization

© 2024 chempedia.info