Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode potential series

Table 7.7 The electrode potential series (against the SHE). The electrode potential series is an arrangement of reduction systems in ascending order of their standard electrode potential... Table 7.7 The electrode potential series (against the SHE). The electrode potential series is an arrangement of reduction systems in ascending order of their standard electrode potential...
A standard electrode potential series consists of equilibrium potentials, not corrosion potentials as you have been measuring in this laboratory. These potentials are usually referenced to NHE but could be referenced to any reference electrode system. How would you convert a standard electrode potential series from Vnhe to Vsce ... [Pg.362]

Standard electrode potential series - potential, and subentries -> standard potential, and - tabulated standard potentials... [Pg.637]

Figure C3.6.4(a) shows an experimental chaotic attractor reconstmcted from tire Br electrode potential, i.e. tire logaritlim of tire Br ion concentration, in tlie BZ reaction [F7]. Such reconstmction is defined, in principle, for continuous time t. However, in practice, data are recorded as a discrete time series of measurements (A (tj) / = 1,... Figure C3.6.4(a) shows an experimental chaotic attractor reconstmcted from tire Br electrode potential, i.e. tire logaritlim of tire Br ion concentration, in tlie BZ reaction [F7]. Such reconstmction is defined, in principle, for continuous time t. However, in practice, data are recorded as a discrete time series of measurements (A (tj) / = 1,...
The metal with the more negative corrosion potential in the environmental conditions prevailing (note that the standard electrode potentials are seldom applicable and the galvanic series can be misleading)... [Pg.153]

This lable of standard electrode potentials (or redos potentials) includes equilibria of the type SC -y i.e. the c.tn.f. series... [Pg.1316]

When metals are arranged in the order of their standard electrode potentials, the so-called electrochemical series of the metals is obtained. The greater the negative value of the potential, the greater is the tendency of the metal to pass into the ionic state. A metal will normally displace any other metal below it in the series from solutions of its salts. Thus magnesium, aluminium, zinc, or iron will displace copper from solutions of its salts lead will displace copper, mercury, or silver copper will displace silver. [Pg.63]

Electrical units 503, 519 Electrification due to wiping 77 Electro-analysis see Electrolysis and Electrogravimetry Electrochemical series 63 Electro-deposition completeness of, 507 Electrode potentials 60 change of during titration, 360 Nernst equation of, 60 reversible, 63 standard 60, (T) 62 Electrode reactions 505 Electrodeless discharge lamps 790 Electrodes antimony, 555 auxiliary, 538, 545 bimetallic, 575... [Pg.862]

Vinyl substituted bipyridine complexes of ruthenium 9 and osmium 10 can be electropolymerized directly onto electrode surfaces The polymerization is initiated and controlled by stepping or cycling the electrode potential between positive and negative values and it is more successful when the number of vinyl groups in the complexes is increased, as in 77 A series of new vinyl substituted terpyridinyl ligands have recently been synthesized whose iron, cobalt and ruthenium complexes 72 are also susceptible to electropolymerization... [Pg.56]

Skibsted, L.FI. and Bjerrum, J. (1977) The standard electrode potentials of aqua gold ions. Acta Chemica Scandinavica Series A Physical and Inorganic Chemistry, 31, 155-156. [Pg.310]

Nowadays, tables of standard electrode potentials are used instead of the electromotive series. They include electrode reactions not only of metals but also of other substances [Table 3.1 for detailed tables, see the books of Lewis and Rendall (1923) and Bard et al. (1985)]. [Pg.48]

De Souza et al. (1997) used spectroscopic ellipsometry to study the oxidation of nickel in 1 M NaOH. Bare nickel electrodes were prepared by a series of mechanical polishing followed by etching in dilute HCl. The electrode was then transferred to the spectroelectrochemical cell and was cathodicaUy polarized at 1.0 V vs. Hg/HgO for 5 minutes. The electrode potential was then swept to 0.9 V. Ellipsometry data were recorded at several potentials during the first anodic and cathodic sweep. Figure 27.30 shows a voltammogram for Ni in l.OM NaOH. The potentials at which data were recorded are shown. Optical data were obtained for various standard materials, such as NiO, a -Ni(OH)2, p-Ni(OH)2, p-NiOOH, and y-NiOOH. [Pg.496]

Figure 12.4 A series of SFG spectra in the CO stretch region of chemisorbed CO on polycrystalline Pt in a CO-free 0.1 M H2SO4 electrolyte. The atop spectra were fit to (12.5) (see text) to extract the amplitude, frequency, and width [Lu et al., 2005 Lagutchev et al, 2006] (each displayed data point is the average of three or five spectra). The electrode potential was swept at a rate of 5 mV/s, and SFG spectra were obtained every 200 ms. Spectra were obtained at 1 mV intervals, but, to avoid congestion in the plot, averaged spectra are displayed at 10 mV intervals in the pre-oxidation region (V < 0.43 V) and at 3.3 mV intervals in the oxidation region (V > 0.43 V) [Lu et al., 2005]. Figure 12.4 A series of SFG spectra in the CO stretch region of chemisorbed CO on polycrystalline Pt in a CO-free 0.1 M H2SO4 electrolyte. The atop spectra were fit to (12.5) (see text) to extract the amplitude, frequency, and width [Lu et al., 2005 Lagutchev et al, 2006] (each displayed data point is the average of three or five spectra). The electrode potential was swept at a rate of 5 mV/s, and SFG spectra were obtained every 200 ms. Spectra were obtained at 1 mV intervals, but, to avoid congestion in the plot, averaged spectra are displayed at 10 mV intervals in the pre-oxidation region (V < 0.43 V) and at 3.3 mV intervals in the oxidation region (V > 0.43 V) [Lu et al., 2005].
This series covers recent advances in electrocatalysis and electrochemistry and depicts prospects for their contribution into the present and future of the industrial world. It illustrates the transition of electrochemical sciences from a solid chapter of physical electrochemistry (covering mainly electron transfer reactions, concepts of electrode potentials and stmcture of the electrical double layer) to the field in which electrochemical reactivity is shown as a unique chapter of heterogeneous catalysis, is supported by high-level theory, connects to other areas of science, and includes focus on electrode surface structure, reaction environment, and interfacial spectroscopy. [Pg.704]

The process of precipitation of a metal from an aqueous solution of its salt by another metal is the well-known cementation process, so named because the precipitated metal is usually cemented on the metal introduced into the system. The process prediction stems from consideration of electrode potentials of metals. The metal positioned with greater (oxidation) potential in the electromotive series will pass into solution and remove a metal positioned with a less positive potential. The larger the spread of the positions of the two metals in the series, the greater is the possibility or feasibility of cementing out one by the other. [Pg.543]

Before dealing with various important applications of the electrochemical series with some practical examples, a break is given here to present a more detailed elaboration on the hydrogen electrode, reference electrodes, and some of the theoretical and general aspects pertaining to electrode potentials and free energy changes involved with cell reactions. [Pg.639]

The electrochemical series corresponds only to the standard condition, i.e., for unit activity of the ions, since a change to another ionic concentration can alter the order of the electrode potentials of the elements very markedly. The case of nickel plating mentioned earlier may be taken as typically illustrative of the many practical examples of the effects and the consequences of nonstandard conditions. It must also be mentioned in the context of the examples of displacement reactions provided earlier that the concentrations and the electrode potentials frequently vary during a displacement reaction. [Pg.656]

Considerable practical importance attaches to the fact that the data in Table 6.11 refer to electrode potentials which are thermodynamically reversible. There are electrode processes which are highly irreversible so that the order of ionic displacement indicated by the electromotive series becomes distorted. One condition under which this situation arises is when the dissolving metal passes into the solution as a complex anion, which dissociates to a very small extent and maintains a very low concentration of metallic cations in the solution. This mechanism explains why copper metal dissolves in potassium cyanide solution with the evolution of hydrogen. The copper in the solution is present almost entirely as cuprocyanide anions [Cu(CN)4]3, the dissociation of which by the process... [Pg.656]

The various possible electrode reactions at the cathode and at the anode in electrolytic cells have been shown in Table 6.2. It has been pointed before that the outcome of an electrolytic process can be made on the basis of knowledge of electrode potentials and of overvoltages. The selection of the ion discharged depends on the following factors (i) the position of the metal or group in the electrochemical series (ii) the concentration and (iii) the nature of the electrode. Examples provided hereunder deliberate on these aspects. [Pg.687]

A continuous potentiometric determination of sulphate in a differential flow system160 consisted of a flow cell with two Pb2+-selective electrodes in series. All solutions contained 75% of methanol and were adjusted to pH 4 a standard solution of Pb(II) passes the first sensor and, after being mixed with the sulphate sample stream, yielding a PbS04 precipitate in addition to excess of Pb(II), it passes the second sensor from the potential difference between the sensors the sulphate content of the sample can then be derived. [Pg.367]


See other pages where Electrode potential series is mentioned: [Pg.307]    [Pg.371]    [Pg.540]    [Pg.498]    [Pg.291]    [Pg.183]    [Pg.489]    [Pg.540]    [Pg.307]    [Pg.371]    [Pg.540]    [Pg.498]    [Pg.291]    [Pg.183]    [Pg.489]    [Pg.540]    [Pg.14]    [Pg.94]    [Pg.125]    [Pg.397]    [Pg.11]    [Pg.224]    [Pg.818]    [Pg.216]    [Pg.1247]    [Pg.1368]    [Pg.176]    [Pg.79]    [Pg.119]    [Pg.164]    [Pg.534]    [Pg.544]    [Pg.652]    [Pg.827]   


SEARCH



Electromotive force series electrode potentials

Standard electrode potential electrochemical series

Standard electrode potential redox series

© 2024 chempedia.info