Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode/ionic liquid interface

Section 6.2.1 offers literature data on the electrodeposition of metals and semiconductors from ionic liquids and briefly introduces basic considerations for electrochemical experiments. Section 6.2.2 describes new results from investigations of process at the electrode/ionic liquids interface. This part includes a short introduction to in situ Scanning Tunneling Microscopy. [Pg.295]

While the structure at the electrode/ionic liquid interface is uncertain it is clear that in the absence of neutral molecules the concentration of anions and cations at the interface will be potential dependent. The main difference between aqueous solutions and ionic liquids is the size of the ions. The ionic radii of most metal ions are in the range 1-2 A whereas for most ions of an ionic liquid they are more typically 3-5 A. This means that in an ionic liquid the electrode will be coated with a layer of ions at least 6-7 A thick. To dissolve in an ionic liquid most metal species are anionic and hence the concentration of metal ions close to the electrode surface will be potential dependent. The more negative the applied potential the smaller the concentration of anions. This means that reactive metals such as Al, Ta, Ti and W will be difficult to deposit as the effective concentration of metal might be too low to nucleate. It is proposed, as one explanation, that this is the reason that aluminum cannot be electrodeposited from Lewis basic chloroaluminate ionic liquids. More reactive metals such as lithium can however be deposited using ionic liquids because they are cationic and therefore... [Pg.11]

Lockett, V., M. Home, R. Sedev, T. Rodopoulos, and J. Ralston. 2010. Differential capacitance of the double layer at the electrode/ionic liquids interface. Physical Chemistry Chemical Physics 12 12499-12512. [Pg.230]

In-Situ STM Study of Electrode-Ionic Liquid Interface... [Pg.167]

The general aim of this work is to show the properties of activated carbon-ionic liquid interface (AC-IL) as well as performance of capacitors based on activated carbons as electrode materials and ionic liquids as electrolytes. [Pg.98]

Electrical double layer EDI). Favorable electron-transfer capabilities make ionic hquids good conductive media and vahd substitutes for conventional electrolytes. Electrolytic properties of ionic hquids were studied to determine the capacitance-layer thickness relationship of the EDL by electrochemical impedance spectroscopy (EIS). EIS data combined with supporting SFG analysis indicate that the EDL formed by ionic hquids at the electrode-ioitic liquid interface follows the Helmholtz model and corresjtonds to a Helmholtz layer of one ion thickness [35,36]. [Pg.165]

Santos, VO., Alves, M.B., Carvalho, M.S., Suarez, P.A.Z. and Rubim, J.C., Surface-enhanced Raman scattering at the silver electrode/ionic liquid (BMlPFg) interface, J. Phys. Chem. B 110, 20379-20385 (2006). [Pg.232]

An element of uncertainty is introduced into the e.m.f. measurement by the liquid junction potential which is established at the interface between the two solutions, one pertaining to the reference electrode and the other to the indicator electrode. This liquid junction potential can be largely eliminated, however, if one solution contains a high concentration of potassium chloride or of ammonium nitrate, electrolytes in which the ionic conductivities of the cation and the anion have very similar values. [Pg.549]

One important advantage of the polarized interface is that one can determine the relative surface excess of an ionic species whose counterions are reversible to a reference electrode. The adsorption properties of an ionic component, e.g., ionic surfactant, can thus be studied independently, i.e., without being disturbed by the presence of counterionic species, unlike the case of ionic surfactant adsorption at nonpolar oil-water and air-water interfaces [25]. The merits of the polarized interface are not available at nonpolarized liquid-liquid interfaces, because of the dependency of the phase-boundary potential on the solution composition. [Pg.121]

Extensive studies have been carried out concerning ion transfers, electron transfers and combinations of ion and electron transfers at liquid-liquid interfaces. Po-larography and voltammetry at liquid-liquid interfaces are of analytical importance, because they are applicable to ionic species that are neither reducible nor oxidizable at conventional electrodes. They are also usefid in studying charge-transfer processes at liquid-liquid interfaces or at membranes solvent extractions, phase transfer catalyses, ion transport at biological membranes, etc. are included among such processes. [Pg.142]

A similar distinction between a system with pre-electrolysis with only one electrode (in this case anodic) process, and a system with simultaneous anodic and cathodic processes (in which anode and cathode are on opposite walls of a microchannel so that each liquid is only in contact with the desired electrode potential, analogous to the fuel cell configurations discussed above) was made by Horii et al. (2008) in their work on the in situ generation of carbocations for nucleophilic reactions. The carbocation is formed at the anode, and the reaction with the nucleophile is either downstream (in the pre-electrolysis case) or after diffusion across the liquid-liquid interface (in the case with both electrodes present at opposite walls). The concept was used for the anodic substitution of cyclic carbamates with allyltrimethylsilane, with moderate to good conversion yields without the need for low-temperature conditions. The advantages of the approach as claimed by the authors are efficient nucleophilic reactions in a single-pass operation, selective oxidation of substrates without oxidation of nucleophile, stabilization of cationic intermediates at ambient temperatures, by the use of ionic liquids as reaction media, and effective trapping of unstable cationic intermediates with a nucleophile. [Pg.70]

Electrolytes The above issue of double layer structure is important to the mechanism of nucleation and growth in ionic liquids, it may therefore be possible to control the structure at the electrode/solution interface by addition of an inert electrolyte. In this respect most Group 1 metals are soluble in most ionic liquids, although it is only generally lithium salts that exhibit high solubility. In ionic liquids with discrete anions the presence of Group 1 metal ions can be detrimental to the deposition of reactive metals such as A1 and Ta where they have been shown to be co-deposited despite their presence in trace concentrations. [Pg.12]

A significant number of studies have characterized the physical properties of eutectic-based ionic liquids but these have tended to focus on bulk properties such as viscosity, conductivity, density and phase behavior. These are all covered in Chapter 2.3. Some data are now emerging on speciation but little information is available on local properties such as double layer structure or adsorption. Deposition mechanisms are also relatively rare as are studies on diffusion. Hence the differences between metal deposition in aqueous and ionic liquids are difficult to analyse because of our lack of understanding about processes occurring close to the electrode/liquid interface. [Pg.104]

The only models that exist for double layer structure in ionic liquids suggest a Helmholz layer at the electrode/solution interface [103, 104], If the reduction potential is below the point of zero charge (pzc) then this would result in a layer of cations approximately 5 A thick across which most of the potential would be dropped, making it difficult to reduce an anionic metal complex. Hence, the double layer models must be incorrect. [Pg.104]

In this chapter we present a few selected results on the nanoscale electrodeposition of some important metals and semiconductors, namely, Al, Ta and Si, in air- and water-stable ionic liquids. Here we focus on the investigation of the electrode/electrolyte interface during electrodeposition with the in situ scanning tunneling microscope and we would like to draw attention to the fascinating... [Pg.240]


See other pages where Electrode/ionic liquid interface is mentioned: [Pg.240]    [Pg.341]    [Pg.576]    [Pg.170]    [Pg.171]    [Pg.172]    [Pg.228]    [Pg.388]    [Pg.61]    [Pg.240]    [Pg.341]    [Pg.576]    [Pg.170]    [Pg.171]    [Pg.172]    [Pg.228]    [Pg.388]    [Pg.61]    [Pg.348]    [Pg.245]    [Pg.245]    [Pg.252]    [Pg.274]    [Pg.76]    [Pg.78]    [Pg.80]    [Pg.102]    [Pg.562]    [Pg.340]    [Pg.59]    [Pg.11]    [Pg.239]    [Pg.268]    [Pg.376]   
See also in sourсe #XX -- [ Pg.587 ]




SEARCH



Electrode interface

In-Situ STM Study of Electrode-Ionic Liquid Interface

Ionic electrode

© 2024 chempedia.info