Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical properties direct

An all aromatic polyetherimide is made by Du Pont from reaction of pyromelUtic dianhydride and 4,4 -oxydianiline and is sold as Kapton. It possesses excellent thermal stabiUty, mechanical characteristics, and electrical properties, as indicated in Table 3. The high heat-deflection temperature of the resin limits its processibiUty. Kapton is available as general-purpose film and used in appHcations such as washers and gaskets. Often the resin is not used directly rather, the more tractable polyamide acid intermediate is appHed in solution to a surface and then is thermally imidi2ed as the solvent evaporates. [Pg.333]

Copolymerizations of benzvalene with norhornene have been used to prepare block copolymers that are more stable and more soluble than the polybenzvalene (32). Upon conversion to (CH), some phase separation of nonconverted polynorhornene occurs. Other copolymerizations of acetylene with a variety of monomers and carrier polymers have been employed in the preparation of soluble polyacetylenes. Direct copolymeriza tion of acetylene with other monomers (33—39), and various techniques for grafting polyacetylene side chains onto solubilized carrier polymers (40—43), have been studied. In most cases, the resulting copolymers exhibit poorer electrical properties as solubiUty increases. [Pg.36]

Electrical properties Electrostatic precipitation Direct testing... [Pg.537]

With particles, the contaminant concentration in the duct is determined by isokinetic sampling with subsequent laboratory analysis use of a calibrated direct reading instrument. If the concentration distribution in the duct is uneven, a complete survey of the concentration distribution with the corresponding duct velocities and cross-sectional area is required. National and ISO standards provide information on isokinetic sampling and velocity measurements. In the case of particles, the airborne emission differs from the total emission, for example in the case of granular particulate. The contaminant settling on surfaces depends on particle distribution, airflow rates, direction in the space, electrical properties of the surfaces and the material, and the amount of moisture or grease in the environment. [Pg.1018]

The results of the above section show that the significant nonuniformity of the distribution of the filler particles in the thickness of sample is observed during injection moulding of the filled polymers. This nonuniformity must affect the electrical properties of CCM owing to the strong dependence of the CCM conductivity on the filler concentration. Although there are no direct comparisons of the concentration profiles and conductivity in the publications, there is data on the distribution of conductivity over the cross-section of the moulded samples. [Pg.134]

In this sub-subsection, the Er doping of amorphous silicon is discussed. The problem of limited solubility of Er in crystalline silicon has been circumvented. However, the electrical properties of pure a-Si are poor compared to c-Si. Therefore, hydrogenated amorphous silicon is much more interesting. Besides, the possibility of depositing a-Si H directly on substrates, i.e., optical materials, would make integration possible. Both low-pressure chemical vapor deposition (LPCVD) [664] and PECVD [665, 666] have been used to make the a-Si H into which Er is implanted. In both methods oxygen is intentionally added to the material, to enhance the luminescence. [Pg.186]

An excellent description of the discovery of neurotransmitters is provided by Valenstein (2005). Only the essentials of neurotransmitter metabolism are covered here for more detailed information the reader is directed to textbooks of neurochemistry, e.g. Siegel et al. (1994). For a more advanced coverage of the topics discussed here as well as information on the electrical properties of the neurons involved, the interested reader is directed to Steriade McCarley (2005). [Pg.24]

X. Zhang, J. Zhang, R. Wang, and Z. Liu, Cationic surfactant directed polyaniline/CNT nanocables synthesis, characterization, and enhanced electrical properties. Carbon 42, 1455—1461 (2004). [Pg.524]

It has been reported that the electrical properties of single molecules incorporating redox groups (e.g. viologens [114, 119, 120, 123, 124], oligophenylene ethynylenes [122, 123], porphyrins [111, 126], oligo-anilines and thiophenes [116, 127], metal transition complexes [118,128-132], carotenes [133], ferrocenes [134,135],perylene tetracarboxylic bisimide [93, 136, 137] and redox-active proteins [138-143]), can be switched electrochemically. Such experiments, typically performed by STM on redox-active molecules tethered via Au-S bonds between a gold substrate and a tip under potential control, allow the possibility to examine directly the correlation between redox state and the conductance of individual molecules. [Pg.96]

If a solution forms part of an electrochemical cell, the potential of the cell, the current flowing through it and its resistance are all determined by the chemical composition of the solution. Quantitative and qualitative information can thus be obtained by measuring one or more of these electrical properties under controlled conditions. Direct measurements can be made in which sample solutions are compared with standards alternatively, the changes in an electrical property during the course of a titration can be followed to enable the equivalence point to be detected. Before considering the individual electrochemical techniques, some fundamental aspects of electrochemistry will be summarized in this section. [Pg.228]

Despite these arguments and the conceptual attractiveness of the procedure which is sketched in Fig. 1 convincing evidence for the relevance of a particular gas phase adsorption experiment can only be obtained by direct comparison to electrochemical data The electrode potential and the work function change are two measurable quantities which are particularly useful for such a comparison. In both measurements the variation of the electrostatic potential across the interface can be obtained and compared by properly referencing these two values 171. Together with the ionic excess charge in the double layer, which in the UHV experiment would be expressed in terms of coverage of the ionic species, the macroscopic electrical properties of the interracial capacitor can thus be characterized in both environments. [Pg.56]

Polymer films may also be synthesized by direct chemical routesT 101. These chemical synthesis routes generally involve some form of electrophilic substitution using Grignard reagents or other modified precursors. The purity and electrical properties of the films produced from the chemical route are generally poorer than... [Pg.83]


See other pages where Electrical properties direct is mentioned: [Pg.372]    [Pg.2]    [Pg.221]    [Pg.235]    [Pg.90]    [Pg.159]    [Pg.1017]    [Pg.410]    [Pg.328]    [Pg.193]    [Pg.381]    [Pg.47]    [Pg.170]    [Pg.383]    [Pg.55]    [Pg.27]    [Pg.177]    [Pg.370]    [Pg.151]    [Pg.76]    [Pg.128]    [Pg.17]    [Pg.358]    [Pg.388]    [Pg.461]    [Pg.13]    [Pg.485]    [Pg.72]    [Pg.732]    [Pg.202]    [Pg.181]    [Pg.192]    [Pg.427]    [Pg.604]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



Direct correlation between grain boundary structure and electric transport properties

Direct properties

Directional properties

© 2024 chempedia.info