Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effects of Cathode-to-Anode Area Ratio

The cathode-to-anode area ratio is frequently a critical factor in corrosion. (This is true when well-defined cathodes and anodes exist. With mixed electrode behavior, where cathodic and anodic reactions occur simultaneously, separate areas are not readily distinguishable, and Aa is assumed equal to Ac.) Discussion of the influence of this ratio will be restricted to the case of a small total-corrosion-circuit resistance leading to the anodic and cathodic reactions occurring at essentially the same potential, Ecorr, as described previously. In Fig. 4.12, three different values of corrosion current, Icorr, and corrosion potential, Ecorr, are shown for three cathode areas relative to a fixed anode area of 1 cm2. For these cases, a reference electrode placed anywhere in the solution [Pg.149]

12 Schematic representation of the effect on lcorr of different cath- odic areas, Ac, and a constant anodic area, Aa [Pg.149]

The earlier sections of this chapter discuss the mixed electrode as the interaction of anodic and cathodic reactions at respective anodic and cathodic sites on a metal surface. The mixed electrode is described in terms of the effects of the sizes and distributions of the anodic and cathodic sites on the potential measured as a function of the position of a reference electrode in the adjacent electrolyte and on the distribution of corrosion rates over the surface. For a metal with fine dispersions of anodic and cathodic reactions occurring under Tafel polarization behavior, it is shown (Fig. 4.8) that a single mixed electrode potential, Ecorr, would be measured by a reference electrode at any position in the electrolyte. The counterpart of this mixed electrode potential is the equilibrium potential, E M (or E x), associated with a single half-cell reaction such as Cu in contact with Cu2+ ions under deaerated conditions. The forms of the anodic and cathodic branches of the experimental polarization curves for a single half-cell reaction under charge-transfer control are shown in Fig. 3.11. It is emphasized that the observed experimental curves are curved near i0 and become asymptotic to E M at very low values of the external current. In this section, the experimental polarization of mixed electrodes is interpreted in terms of the polarization parameters of the individual anodic and cathodic reactions establishing the mixed electrode. The interpretation then leads to determination of the corrosion potential, Ecorr, and to determination of the corrosion current density, icorr, from which the corrosion rate can be calculated. [Pg.150]

In review, consider a mixed electrode at which one net reaction is the transfer of metal to the solution as metal ions, and the other net reaction is the reduction of chemical species in the solution such as H+, 02, Fe3+, or N02 on the metal surface. For purposes of the present discussion, no attempt is made to define the individual sites for the anodic (net oxidation) and cathodic (net reduction) reactions. They may be homogeneously distributed, resulting in uniform corrosion, or segregated, resulting in localized corrosion. In the latter case, the cathode-to-anode area ratio is of practical importance in determining the rate of penetration at anodic areas. [Pg.151]

For the isolated corroding surface (i.e., no external current), the total rate of oxidation must equal the total rate of reduction. This condition, in terms of currents, is expressed by  [Pg.152]


See other pages where Effects of Cathode-to-Anode Area Ratio is mentioned: [Pg.149]   


SEARCH



Anode effect

Area ratio

Cathode effect

Cathode:anode ratio

Effect area ratio

© 2024 chempedia.info