Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effective hydrogen concentration

Over platinum black, -hexane gives 2- and 3-methylpentanes, methylcyclopentane, and benzene. Actual concentrations are compared in Fig. 2 with equilibrium ones as a function of hydrogen pressure. Unreacted n-hexane is ignored since it would not be able to equilibrate with all its products. Realistic values are obtained if methylcyclopentane plus isomers are compared with the amount of benzene. These, however, correspond to much higher effective hydrogen concentrations than measured in the gas phase (31). [Pg.277]

BeryUium reacts readUy with sulfuric, hydrochloric, and hydrofluoric acids. DUute nitric acid attacks the metal slowly, whereas concentrated nitric acid has Httle effect. Hot concentrated alkaUes give hydrogen and the amphoteric beryUium hydroxide [13327-32-7] Be(OH)2. Unlike the aluminates, the beryUates are hydrolyzed at the boU. [Pg.66]

Both reactions were carried out under two-phase conditions with the help of an additional organic solvent (such as iPrOH). The catalyst could be reused with the same activity and enantioselectivity after decantation of the hydrogenation products. A more recent example, again by de Souza and Dupont, has been reported. They made a detailed study of the asymmetric hydrogenation of a-acetamidocin-namic acid and the kinetic resolution of methyl ( )-3-hydroxy-2-methylenebu-tanoate with chiral Rh(I) and Ru(II) complexes in [BMIM][BF4] and [BMIM][PFg] [55]. The authors described the remarkable effects of the molecular hydrogen concentration in the ionic catalyst layer on the conversion and enantioselectivity of these reactions. The solubility of hydrogen in [BMIM][BF4] was found to be almost four times higher than in [BMIM][PFg]. [Pg.231]

The effects of concentration, velocity and temperature are complex and it will become evident that these factors can frequently outweigh the thermodynamic and kinetic considerations detailed in Section 1.4. Thus it has been demonstrated in Chapter 1 that an increase in hydrogen ion concentration will raise the redox potential of the aqueous solution with a consequent increase in rate. On the other hand, an increase in the rate of the cathodic process may cause a decrease in rate when the metal shows an active/passive transition. However, in complex environmental situations these considerations do not always apply, particularly when the metals are subjected to certain conditions of high velocity and temperature. [Pg.307]

H+], calculation of, 192, see also Hydrogen ion Haber, Fritz, 151 Haber process, 140, 150 Hafnium, oxidation number, 414 Haldane, J. B. S., 436 Half-cell potentials effect of concentration, 213 measuring, 210 standard, 210 table of, 211, 452 Half-cell reactions, 201 Half-life, 416 Half-reaction, 201 balancing, 218 potentials, 452 Halides... [Pg.459]

In addition to the surface physics and chemistry phenomena involved, a further effect may follow the interaction at the hydrogen-metal surface, that is the absorption of hydrogen by the bulk phase of the metal. This absorption leads to the formation of a solid solution within a certain, usually low, range of hydrogen concentrations. However, with several transition metals, exceeding a certain limit of hydrogen concentration results in the formation of a specific crystallographically distinct phase of the... [Pg.245]

The variation of enantioselectivities with temperature and pressure was investigated. The effects of these two factors are very substrate dependent and difficult to generalize even in a single substrate serie. However, it seems that enantioselectivities are shghly better at 25-40 °C than at lower temperatures (0 °C or less). The stereoselectivity can be inverted for specific alkenes (formation of the S or R enantiomer preferentially). For several substrates, the reactions tend to proceed to completion with optimal ee s when performed at lower hydrogen pressure (2 bar) instead of 50 bar (Fig. 13). Pronoimced variation of enantioselectivities with hydrogen concentration in solution may indicate the presence of two (or even more) different mechanisms which happen to give opposite enantiomers for some substrates. [Pg.221]

Hydrogenation of lactose to lactitol on sponge itickel and mtheitium catalysts was studied experimentally in a laboratory-scale slurry reactor to reveal the true reaction paths. Parameter estimation was carried out with rival and the final results suggest that sorbitol and galactitol are primarily formed from lactitol. The conversion of the reactant (lactose), as well as the yields of the main (lactitol) and by-products were described very well by the kinetic model developed. The model includes the effects of concentrations, hydrogen pressure and temperature on reaction rates and product distribution. The model can be used for optinuzation of the process conditions to obtain highest possible yields of lactitol and suppressing the amounts of by-products. [Pg.113]

There are three major classes of palladium-based hydrogen sensors [4], The most popular class of palladium-based sensors is based on palladium resistors. A thin film of palladium deposited between two metal contacts shows a change in conductivity on exposure to hydrogen due to the phase transition in palladium. The palladium field-effect transistors (FETs) or capacitors constitute the second class, wherein the sensor architecture is in a transistor mode or capacitor configuration. The third class of palladium sensors includes optical sensors consisting of a layer of palladium coated on an optically active material that transforms the hydrogen concentration to an optical signal. [Pg.502]

The decrease in free carriers (holes) after hydrogenation of p-type Si is also evidenced by the decrease in IR absorption at the longer wavelengths, where free-carrier absorption dominates, and by a decrease in the device capacitance of Schottky-barrier diodes, due to the increase in the depletion width (at a given reverse bias) as the effective acceptor concentration decreases. [Pg.20]


See other pages where Effective hydrogen concentration is mentioned: [Pg.270]    [Pg.182]    [Pg.317]    [Pg.113]    [Pg.270]    [Pg.182]    [Pg.317]    [Pg.113]    [Pg.458]    [Pg.480]    [Pg.258]    [Pg.526]    [Pg.117]    [Pg.91]    [Pg.66]    [Pg.66]    [Pg.53]    [Pg.271]    [Pg.1245]    [Pg.1282]    [Pg.210]    [Pg.374]    [Pg.322]    [Pg.648]    [Pg.193]    [Pg.373]    [Pg.375]    [Pg.278]    [Pg.162]    [Pg.296]    [Pg.160]    [Pg.127]    [Pg.82]    [Pg.23]    [Pg.23]    [Pg.84]    [Pg.349]    [Pg.351]    [Pg.59]    [Pg.45]    [Pg.133]    [Pg.200]    [Pg.246]    [Pg.264]   
See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Hydrogen concentration

Hydrogen concentration, effect

Hydrogen concentration, effect

Hydrogen peroxide concentration, effect

Hydrogen-ion concentration, effect

Hydrogenation concentration

Product selectivity hydrogen concentration effect

Sulfur removal hydrogen concentration effects

© 2024 chempedia.info