Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic Kinetic Resolutions by Enzymes Coupled with Metal Catalysts

Dynamic Kinetic Resolutions by Enzymes Coupled with Metal Catalysts [Pg.390]

An excellent example of the successful combination of chemo- and biocatalysis in a two-step cascade process is provided by the dynamic kinetic resolutions (DKR) of chiral alcohols and amines. We first suggested [6], in 1993, that (de)-hydrogenation catalysts should be capable of catalyzing the racemization of chiral alcohols and amines via a dehydrogenation/hydrogenation mechanism as shown in Fig. 9.1. [Pg.390]

Subsequently the groups of Williams [7] and Backvall [8] showed, in 1996 and 1997, respectively, that lipase-catalyzed transesterification of alcohols could be combined with transition metal-catalyzed racemization to produce an efficient dynamic kinetic resolution of chiral secondary alcohols (Fig. 9.2). [Pg.390]

In the system described by Williams a rhodium catalyst was used, in the presence of an inorganic base and phenanthroline, and one equivalent of acetophenone, for the racemization, and a Pseudomonas sp. lipase for the acylation using vinyl acetate as the acyl donor (Fig. 9.3). [Pg.390]

Backvall, in contrast, used the ruthenium complex 1, which does not require the addition of an external base, in combination with p-chlorophenyl acetate as acyl donor (Fig. 9.4). The latter was chosen because it generates p-chlorophenol which does not react with the Ru catalyst. In contrast, vinyl acetate and analo- [Pg.390]


The ability of enzymes to achieve the selective esterification of one enantiomer of an alcohol over the other has been exploited by coupling this process with the in situ metal-catalysed racemisation of the unreactive enantiomer. Marr and co-workers have used the rhodium and iridium NHC complexes 44 and 45 to racemise the unreacted enantiomer of substrate 7 [17]. In combination with a lipase enzyme (Novozyme 435), excellent enantioselectivities were obtained in the acetylation of alcohol 7 to give the ester product 43 (Scheme 11.11). A related dynamic kinetic resolution has been reported by Corberdn and Peris [18]. hi their chemistry, the aldehyde 46 is readily racemised and the iridium NHC catalyst 35 catalyses the reversible reduction of aldehyde 46 to give an alcohol which is acylated by an enzyme to give the ester 47 in reasonable enantiomeric excess. [Pg.258]

Enzymatic resolution of racemic secondary alcohols by enantiomer-selective acylation gives optically pure compounds with up to 50% yield [332], When this method is coupled with the principle of dynamic kinetic resolution (see Section 1.4.1.5), the theoretical yield increases to 100%. Thus a reaction system consisting of an achiral transition-metal catalyst for racemization, a suitable enzyme, acetophenone, and an acetyl donor allows the transformation of racemic 1-phenylethanol to the R acetates with an excellent ee (Scheme 1.93) [333]. The presence of one equiv. of acetophenone is necessary to promote the alcohol racemization catalyzed by the... [Pg.80]




SEARCH



By Resolution

Catalyst dynamics

Catalyst enzyme

Catalysts kinetics

Dynamic coupling

Dynamic enzymes

Dynamic kinetic resolution

Dynamic resolutions

Dynamical coupling

Enzyme kinetic

Enzyme kinetics

Enzymes Kinetic resolution with

Enzymes coupling

Enzymes coupling with

Enzymes kinetic resolution

Enzymes resolution

Enzymes, resolution with

Enzymic coupling with

Kinetic coupling

Kinetic dynamic

Kinetic resolutions dynamic resolution

Kinetics dynamic kinetic resolution

Metal enzymes

Resolution by enzymes

Resolution catalyst

Resolution with

© 2024 chempedia.info