Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Droplet size shape

A sample solution is drawn or pumped into a V-shaped groove cut into the end of a capillary tube. The crossed gas and liquid streams form an aerosol. An impactor bead can be used to provide an even smaller droplet size. [Pg.145]

Inertial impaction is the method of choice for evaluating particle or droplet size delivery from pharmaceutical aerosol systems. This method lends itself readily to theoretical analysis, ft has been evaluated in general terms [39] and for specific impactors [40]. Inertial impaction employs Stokes law to determine aerodynamic diameter of particles being evaluated. This has the advantage of incorporating shape and density effects into a single term. [Pg.494]

This concept allows the shape of the titration curves to be explained by postulating that the chloroform droplet size decreases as the interfacial tension (ift) between the aqueous and chloroform phases is decreased by the presence of active surfactant. As the endpoint in a titration is approached the amount of active SDBS decreases as it complexes with the injected hyamine. The reduction in the amount of active surfactant material results in an increase... [Pg.266]

In order to characterize quantitatively the polydisperse morphology, the shape and the size distribution functions are constructed. The size distribution function gives the probability to find a droplet of a given area (or volume), while the shape distribution function specified the probability to find a droplet of given compactness. The separation of the disconnected objects has to be performed in order to collect the data for such statistics. It is sometimes convenient to use the quantity v1/3 = [Kiropiet/ ]1 3 as a dimensionless measure of the droplet size. Each droplet itself can be further analyzed by calculating the mass center and principal inertia momenta from the scalar field distribution inside the droplet [110]. These data describe the droplet anisotropy. [Pg.228]

The WGM laser mode structure is determined by the droplet size and shape (which can be influenced by optical trapping forces26), laser polarization, and dye concentration. ... [Pg.484]

The EBRD-atomized particles may be of spherical or flaky shape. Droplet size is less than 700 pm, but much smaller droplets, 30 to 50 pm in diameter, have also been demonstrated. Cooling rates higher than 103 °C/s are achieved in fine droplets. [Pg.104]

The Laser-spin-atomized droplets are usually spherical, clean, and homogeneous in composition. A mass median diameter of 100 pm has been obtained for a Ni-Al-Mo alloy. Cooling rates are estimated to be in the order of magnitude of 105 °C/s. Similarly to other centrifugal atomization techniques, droplet properties (shape, size, cooling rate, etc.) are dependent on the rotation speed, ingot diameter, superheat, and material properties. [Pg.110]

Subjected to steady acceleration, a droplet is flattened gradually. When a critical relative velocity is reached, the flattened droplet is blown out into a hollow bag anchored to a nearly circular rim which contains at least 70% of the mass of the original droplet. Surface tension force is sufficient to allow the bag shape to develop. The bag, with a concave surface to the gas flow, is stretched and swept off in the downstream direction. The rupture of the bag produces a cloud of very fine droplets presumably via a perforation mode, and the rim breaks up into relatively larger droplets, although all droplets are at least an order of magnitude smaller than the initial droplet size. This is referred to as bag breakup (Fig. 3.10)T2861... [Pg.172]

Recently, Razumovskid441 studied the shape of drops, and satellite droplets formed by forced capillary breakup of a liquid jet. On the basis of an instability analysis, Teng et al.[442] derived a simple equation for the prediction of droplet size from the breakup of cylindrical liquid jets at low-velocities. The equation correlates droplet size to a modified Ohnesorge number, and is applicable to both liquid-in-liquid, and liquid-in-gas jets of Newtonian or non-Newtonian fluids. Yamane et al.[439] measured Sauter mean diameter, and air-entrainment characteristics of non-evaporating unsteady dense sprays by means of an image analysis technique which uses an instantaneous shadow picture of the spray and amount of injected fuel. Influences of injection pressure and ambient gas density on the Sauter mean diameter and air entrainment were investigated parametrically. An empirical equation for the Sauter mean diameter was proposed based on a dimensionless analysis of the experimental results. It was indicated that the Sauter mean diameter decreases with an increase in injection pressure and a decrease in ambient gas density. It was also shown that the air-entrainment characteristics can be predicted from the quasi-steady jet theory. [Pg.257]

Generally, the mean droplet size is proportional to liquid surface tension, and inversely proportional to liquid density and vibration frequency. The proportional power index is —1/3 for the surface tension, about -1/3 for the liquid density, and -2/3 for the vibration frequency. The mean droplet size may be influenced by two additional parameters, i.e., liquid viscosity and flow rate. As expected, increasing liquid viscosity, and/or flow rate leads to an increase in the mean droplet size,[13°h482] while the spray becomes more polydisperse at high flow rates.[482] The spray angle is also affected by the liquid flow rate, vibration frequency and amplitude. Moreover, the spray shape is greatly influenced by the direction of liquid flow (upwards, downwards, or horizontally).[482]... [Pg.278]

In the empirical correlation proposed by Kato et al.,[503] the mean droplet size is inversely proportional to the water pressure, with a power index of 0.5 for conical shaped annular-jet atomizers, and 0.7-1.0 for V-shaped flat-jet atomizers. This suggests a lower efficiency of the annular-jet atomizers in terms of spray fineness at high water pressures. The data of Kato et al.15031 were obtained for water pressures lower than 10 MPa. Seki et al.15021 observed the similar trend in the water atomization of nickel and various steels at higher water pressures (>10 MPa). Since k is dependent on both... [Pg.289]

The largest portion of the monomer (>95%) is dispersed as monomer droplets whose size depends on the stirring rate. The monomer droplets are stabilized by surfactant molecules absorbed on their surfaces. Monomer droplets have diameters in the range 1-100 pm (103-105 nm). Thus, in a typical emulsion polymerization system, the monomer droplets are much larger than the monomer-containing micelles. Consequently, while the concentration of micelles is 1019-1021 the concentration of monomer droplets is at most 1012-1014 L 1. A further difference between micelles and monomer droplets is that the total surface area of the micelles is larger than that of the droplets by more than two orders of magnitude. The size, shape, and concentration of each of the various types of particles in the... [Pg.352]


See other pages where Droplet size shape is mentioned: [Pg.231]    [Pg.102]    [Pg.473]    [Pg.171]    [Pg.174]    [Pg.231]    [Pg.102]    [Pg.473]    [Pg.171]    [Pg.174]    [Pg.2765]    [Pg.334]    [Pg.269]    [Pg.156]    [Pg.477]    [Pg.8]    [Pg.26]    [Pg.29]    [Pg.56]    [Pg.57]    [Pg.60]    [Pg.68]    [Pg.108]    [Pg.111]    [Pg.114]    [Pg.119]    [Pg.153]    [Pg.166]    [Pg.170]    [Pg.208]    [Pg.211]    [Pg.239]    [Pg.288]    [Pg.294]    [Pg.355]    [Pg.369]    [Pg.400]    [Pg.403]    [Pg.409]    [Pg.447]    [Pg.497]    [Pg.164]    [Pg.234]    [Pg.239]   
See also in sourсe #XX -- [ Pg.8 , Pg.126 ]




SEARCH



Droplet size

Droplets shape

© 2024 chempedia.info