Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double layer GCSG model

In the absence of specific adsorption of anions, the GCSG model regards the electrical double layer as two plate capacitors in series that correspond respectively, to two regions of the electrolyte adjacent to the electrode, (a) An inner compact layer of solvent molecules (one or two layers) and immobile ions attracted by Coulombic forces (Helmholtz inner plane in Fig. 2). Specific adsorption of anions at the electrode surface may occur in this region by electronic orbital coupling with the metal, (b) An outer diffuse region of coulombically attracted ions in thermal motion that complete the countercharge of the electrode. [Pg.14]

A schematic representation of the inner region of the double layer model is shown in Fig. 1. Figure lb describes the distribution of counterions and the potential profile /(a ) from a positively charged surface. The potential decay is caused by the presence of counterions in the solution side (mobile phase) of the double layer. The inner Helmholtz plane (IHP) or the inner Stem plane (ISP) is the plane through the centers of ions that are chemically adsorbed (if any) on the solid surface. The outer Helmholtz plane (OHP) or the outer Stem plane (OSP) is the plane of closest approach of hydrated ions (which do not adsorb chemically) in the diffuse layer. Therefore, the plane that corresponds to x = 0 in Eq. (4) coincides with the OHP in the GCSG model. The doublelayer charge and potential are defined in such a way that ao and /o, op and Tp, and <5d and /rf are the charge densities and mean potentials of the surface plane, the Stem layer (IHP), and the diffuse layer, respectively (Fig. 1). [Pg.161]

Three interface layers occur within the electrical or the diffuse double layer (DDL) of a clay particle the inner Helmholtz plane (IHP) the outer Helmholtz plane (OHP) with constant thicknesses of Xi and X2, respectively and third is the plane of shear where the electro kinetic potential is measured (Rg. 2.10). This plane of shear is sometimes assumed to coincide with the OHP plane. The IHP is the outer limit of the specifically adsorbed water, molecules with dipoles, and other species (anions or cations) on the clay solid surface. The OHP is the plane that defines the outer limit of the Stem layer, the layer of positively charged ions that are condensed on the clay particle surface. In this model, known as the Gouy-Chapman-Stera-Grahame (GCSG) model, the diffuse part of the double layer starts at the location of the shear plane or the OHP plane (Hunter, 1981). The electric potential drop is linear across the Stem layer that encompasses the three planes (IHP, OHP, and shear planes) and it is exponential from the shear plane to the bulk solution, designated as the reference zero potential. [Pg.51]


See other pages where Double layer GCSG model is mentioned: [Pg.23]    [Pg.65]    [Pg.158]    [Pg.629]    [Pg.630]    [Pg.583]    [Pg.160]    [Pg.160]    [Pg.163]    [Pg.190]    [Pg.53]    [Pg.706]    [Pg.416]    [Pg.420]    [Pg.441]    [Pg.511]    [Pg.190]   
See also in sourсe #XX -- [ Pg.160 , Pg.163 ]




SEARCH



Double layer model

Double, model

Layer model

Layered models

Models layer model

© 2024 chempedia.info