Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dopa-decarboxylase inhibitors

Figure 15.4 The central and peripheral metabolism of levodopa and its modification by drugs, (a) Levodopa alone. After oral administration alone most dopa is rapidly decarboxylated to DA in the gut and blood with some o-methylated (COMT) to o-methyl/dopa (OMD). Only a small amount (3%) enters the CNS to be converted to DA. (b) After an extracerebral dopa decarboxylase inhibitor. Blocking just the peripheral dopa decarboxylase (DD) with inhibitors like carbidopa and benserazide, that cannot enter the CNS (extra cerebral dopa decarboxylase inhibitors, ExCDDIs), stops the conversion of levodopa to DA peripherally, so that more enters the CNS or is o-methylated peripherally to OMD. Figure 15.4 The central and peripheral metabolism of levodopa and its modification by drugs, (a) Levodopa alone. After oral administration alone most dopa is rapidly decarboxylated to DA in the gut and blood with some o-methylated (COMT) to o-methyl/dopa (OMD). Only a small amount (3%) enters the CNS to be converted to DA. (b) After an extracerebral dopa decarboxylase inhibitor. Blocking just the peripheral dopa decarboxylase (DD) with inhibitors like carbidopa and benserazide, that cannot enter the CNS (extra cerebral dopa decarboxylase inhibitors, ExCDDIs), stops the conversion of levodopa to DA peripherally, so that more enters the CNS or is o-methylated peripherally to OMD.
Blocking the conversion to DA would appear stupid unless this could be restricted to the periphery. More dopa would then be preserved for entry into the brain, where it could be decarboxylated to DA as usual. Drugs like carbidopa and benserazide do precisely that and are used successfully with levodopa. They are known as extracerebral dopa decarboxylase inhibitors (ExCDDIs). Carbidopa (a-methyldopa hydrazine) is structurally similar to dopa but its hydrazine group (NHNH2) reduces lipid solubility and CNS penetration (Fig. 15.4). [Pg.307]

Carbidopa, a dopa-decarboxylase inhibitor, is added to the levodopa in order to decrease the peripheral conversion of levodopa to dopamine. It does not cross the blood-brain barrier and does not interfere with levodopa conversion in the brain. Concomitant administration of carbidopa and levodopa allows for lower levodopa doses and minimizes levodopa peripheral side effects such as nausea, vomiting, anorexia, and hypotension. For most patients, at least 75 to 100 mg daily of carbidopa is required to adequately block dopamine decarboxylase in the peripheral metabolism of levodopa in most patients. Taking extra carbidopa may reduce nausea related to initiating levodopa.8,16... [Pg.481]

Chlorpromazine is an aliphatic phenothiazine antipsychotic used in schizophrenia and which may exacerbate parkinsonism. Co-careldopa is a combination of levodopa and the peripheral dopa-decarboxylase inhibitor, carbidopa. Co-careldopa, amantadine, entacapone and bromocriptine are all indicated in the management of parkinsonism. [Pg.205]

Levodopa, the metabolic precursor of dopamine, is the most effective agent in the treatment of Parkinson s disease but not for drug-induced Parkinsonism. Oral levodopa is absorbed by an active transport system for aromatic amino acids. Levodopa has a short elimination half-life of 1-3 hours. Transport over the blood-brain barrier is also mediated by an active process. In the brain levodopa is converted to dopamine by decarboxylation and both its therapeutic and adverse effects are mediated by dopamine. Either re-uptake of dopamine takes place or it is metabolized, mainly by monoamine oxidases. The isoenzyme monoamine oxidase B (MAO-B) is responsible for the majority of oxidative metabolism of dopamine in the striatum. As considerable peripheral conversion of levodopa to dopamine takes place large doses of the drug are needed if given alone. Such doses are associated with a high rate of side effects, especially nausea and vomiting but also cardiovascular adverse reactions. Peripheral dopa decarboxylase inhibitors like carbidopa or benserazide do not cross the blood-brain barrier and therefore only interfere with levodopa decarboxylation in the periphery. The combined treatment with levodopa with a peripheral decarboxylase inhibitor considerably decreases oral levodopa doses. However it should be realized that neuropsychiatric complications are not prevented by decarboxylase inhibitors as even with lower doses relatively more levodopa becomes available in the brain. [Pg.360]

Geriatric Considerations - Summary Levodopa is a percursor to dopamine and is converted to dopamine in the CNS. Clinical effectiveness is increased by taking in combination with carbidopa, a dopa decarboxylase inhibitor. This combination is often the initial treatment for Parkinson s disease. [Pg.691]

Carbidopa (4.75), a hydrazine analog of a-methyldopa, is an important DOPA decarboxylase inhibitor. It is used to protect the DOPA that is administered in large doses in Parkinson s disease (section 4.4.4) from peripheral decarboxylation. DOPA concentrations in the CNS will therefore increase without requiring the administration of extremely high, toxic doses of DOPA. The exclusive peripheral mode of action of carbidopa is due to its ionic character and inability to cross the blood-brain barrier. Because of this effect, carbidopa is co-administered with DOPA in a single tablet formulation as a first-line therapy for Parkinson s disease. Benserazide (4.76) has similar activity. [Pg.240]

Since Parkinson s disease arises from a deficiency of DA in the brain, the logical treatment is to replace the DA. Unfortunately, dopamine replacement therapy cannot be done with DA because it does not cross the blood-brain barrier. However, high doses (3-8 g/day, orally) of L(-)-DOPA (levodopa), a prodrug of DA, have a remarkable effect on the akinesia and rigidity. The side effects of such enormous doses are numerous and unpleasant, consisting initially of nausea and vomiting and later of uncontrolled movements (limb dyskinesias). The simultaneous administration of carbidopa (4.75) or benserazide (4.76)—peripheral DOPA decarboxylase inhibitors—allows the administration of smaller doses, and also prevents the metabolic formation of peripheral DA, which can act as an emetic at the vomiting center in the brainstem where the blood-brain barrier is not very effective and can be penetrated by peripheral DA. [Pg.247]

Levodopa and peripheral dopa-decarboxylase inhibitor, carbidopa or benserazide in the treatment of parkinsonism. [Pg.44]

Depression. Depression is our most common mental problem. One in four women and one in ten men will have a major depression during their lifetime.1095 More than 15 million people in the United States are affected by severe depression in any given year and more than 30,000 may commit suicide.1096 1097 Worldwide psychiatric problems, mostly depression, account for 28% of all disabilities.1098 The biogenic amine hypothesis states that depression results from the depletion of neurotransmitters in the areas of the brain involved in sleep, arousal, appetite, sex drive, and psychomotor activity. An excess of transmitters is proposed to give rise to the manic phase of the bipolar (manic-depressive) cycle that is sometimes observed. In support of this hypothesis is the observation that administration of reserpine precipitates depression, which may be serious in 15-20% of hypertensive patients receiving the drug. Similar effects are observed with the dopa decarboxylase inhibitor a-methyldopa... [Pg.1808]

The etiology of progressive death of dopaminergic neurons in substantia nigra of Parkinson s disease brains remains unclear. Dopamine deficiency in Parkinson s disease is commonly treated with L-dopa and carbidopa, a periphera dopa decarboxylase inhibitor (Sinemet). Since its introduction, L-dopa has been shown to be effective in treating Parkinson s disease. However, high concentrations of L-dopa produce side effects such as psychosis, on-off effects, abnormal involuntary movements, and akinetic crisis. [Pg.191]

Cessation of impulse flow in dopaminergic neurons can be achieved by administration of gammabutyrolactone (GBL). In the presence of a dopa decarboxylase inhibitor this induces an accumulation of DOPA. Administration of dopamine receptor agonists decreases this accumulation of DOPA, an affect which can be antagonized by pretreatment with neuroleptics (recently reviewed by Roth, 109). [Pg.132]

LEVODOPA VITAMIN B6 1 efficacy of levodopa (in the absence of a dopa decarboxylase inhibitor) A derivative of vitamin B6 is a cofactor in the peripheral conversion of levodopa to dopamine, which 1 the amount available for conversion in the CNS. Dopa decarboxylase inhibitors inhibit this peripheral reaction Avoid co-administration of levodopa with vitamin B6 co-administration of vitamin B6 with co-beneldopa or co-careldopa is acceptable... [Pg.250]

Slowing of metabolism may usefully extend drug action, as when a dopa decarboxylase inhibitor, e.g. carbidopa, is combined with levodopa (as co-careldopa) for parkinsonism. [Pg.118]


See other pages where Dopa-decarboxylase inhibitors is mentioned: [Pg.308]    [Pg.166]    [Pg.130]    [Pg.225]    [Pg.123]    [Pg.124]    [Pg.125]    [Pg.604]    [Pg.605]    [Pg.145]    [Pg.614]    [Pg.614]    [Pg.317]    [Pg.637]    [Pg.639]    [Pg.329]    [Pg.330]    [Pg.335]    [Pg.230]    [Pg.96]    [Pg.427]    [Pg.52]    [Pg.681]    [Pg.681]    [Pg.378]    [Pg.432]    [Pg.567]    [Pg.567]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



DOPA

Dopa decarboxylase

Extracerebral dopa decarboxylase inhibitors

Levodopa and dopa decarboxylase inhibitors

© 2024 chempedia.info