Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dithianes, preparation

In particular, 1,3-dithiane prepared from dimethoxymethane (methylal) and pro pane-1,3-dithiol in the presence of boron trifluoride-etherate,237 and 2-alkyl-1,3-dithianes prepared similarly from aldehydes,2383 are important acyl anion equivalents. These and other uses are discussed in Sections 5.7.5, p. 596, and 6.6.1, p. 909. A wide-ranging review of the reversal of polarity of the carbonyl group through the formation of these sulphur-containing reagents has emphasised their value in organic synthesis.2388... [Pg.788]

Asymmetric sulfoxidation of2-acyl-1,3-dithianes Preparation of optically pure DiTOX substrates. The preliminary investigations of 1,3-dithiane derivatives as asymmetric building blocks and chiral auxiliaries described in this review... [Pg.141]

Thermolysis of 2-diazo-l,3-dithiane, prepared in situ from the reaction of 2-lithio-2-trimethylsilyl-l,3-dithiane and tosyl azide, occurs already below 0°C. The resulting carbene dimerizes efficiently even in the presence of alkenes and alkynes to give bis(l,3-dithianylidene) in 78% yield (Scheme 41) <1997T9269>. [Pg.790]

RSSiMe3 [R = Me, Et, (-CH2-)3], Zn, Et20, 0-25°, 70-95% yield. This method is satisfactory for a variety of aldehydes and ketones and is also suitable for the preparation of 1,3-dithianes. Methacrolein gives the product of Michael addition rather than the thioacetal. The less hindered of two ketones is readily protected using this methodology. ... [Pg.198]

Acyclic monothio acetals and ketals can be prepared directly from a carbonyl compound or by transketalization, a reaction that does not involve a free carbonyl group, from a 1,3-dithiane or 1,3-dithiolane. They are cleaved by acidic hydrolysis or Hg(II) salts. [Pg.207]

The Dim ester was developed for the protection of the carboxyl function during peptide synthesis. It is prepared by transesterification of amino acid methyl esters with 2-(hydroxymethyl)-l,3-dithiane and Al(/-PrO)3 (reflux, 4 h, 75°, 12 torr, 75% yield). It is removed by oxidation [H2O2, (NH4)2Mo04 pH 8, H2O, 60 min, 83% yield]. Since it must be removed by oxidation it is not compatible with.sulfur-containing amino acids such as cysteine and methionine. Its suitability for other, easily oxidized amino acids (e.g., tyrosine and tryptophan) must also be questioned. It is stable to CF3CO2H and HCl/ether. - ... [Pg.243]

This method for the preparation of cyclobutanone via oxaspiropentane is an adaptation of that described by Salaiin and Conia. The previously known large-scale preparations of cyclobutanone consist of the reaction of the hazardous diazomethane with ketene, the oxidative degradation or the ozonization in presence of pjrridine of methylenecyclobutane prepared from pentaerythritol, or the recently reported dithiane method of Corey and Seebach, which has the disadvantage of producing an aqueous solution of the highly water-soluble cyclobutanone. A procedure involving the solvolytic cyclization of 3-butyn-l-yl trifluoro-methanesulfonate is described in Org. Syn., 54, 84 (1974). [Pg.40]

Finally, the 1,3-dione systems prepared by Cram and Alberts deserve special note . These compounds, referred to as hexahosts are similar to the polymer-bound material illustrated as Compound 29 in Chap. 6. The synthesis is based on a methylene-bridged bis-dithiane unit. One of these may be cyclized with a polyethylene glycol, or more than one unit may be incorporated to give multiple 1,3-dione binding sites in the macrocycle. The former case is illustrated in Eq. (3.46). [Pg.44]

When 2-lithio-2-(trimethylsilyl)-l,3-dithiane,9 formed by deprotonation of 9 with an alkyllithium base, is combined with iodide 8, the desired carbon-carbon bond forming reaction takes place smoothly and gives intermediate 7 in 70-80% yield (Scheme 2). Treatment of 7 with lithium diisopropylamide (LDA) results in the formation of a lactam enolate which is subsequently employed in an intermolecular aldol condensation with acetaldehyde (6). The union of intermediates 6 and 7 in this manner provides a 1 1 mixture of diastereomeric trans aldol adducts 16 and 17, epimeric at C-8, in 97 % total yield. Although stereochemical assignments could be made for both aldol isomers, the development of an alternative, more stereoselective route for the synthesis of the desired aldol adduct (16) was pursued. Thus, enolization of /Mactam 7 with LDA, as before, followed by acylation of the lactam enolate carbon atom with A-acetylimidazole, provides intermediate 18 in 82% yield. Alternatively, intermediate 18 could be prepared in 88% yield, through oxidation of the 1 1 mixture of diastereomeric aldol adducts 16 and 17 with trifluoroacetic anhydride (TFAA) in... [Pg.253]

In ( )-[2-(l-propenyl)-l, 3-dithian-2-yl]lithium, no problem of EjZ selectivity arises. It is easily prepared by deprotonation of the allylic dithiane87,88 with butyllithium in THF, whereas deprotonation of the 2-propylidene-l, 3-dithiane requires the assistance of HMPA. The addition to saturated aldehydes proceeds with excellent y-regioseleetivity and anti selectivity88,89. As often observed in similar cases, aldehydes which bear an, p2-carbon atom adjacent to the carbonyl group give lower selectivities. The stereoselectivity decreases with ketones (2-bu-tanone y/a 84 16, antiisyn 77 23)88. The reaction with ethyl 2-oxopropanoate is merely nonstereoselective90, but addition of zinc chloride improved the syn/anti ratio to 96 4, leading to an efficient synthesis of ( )-crobarbatic acid. [Pg.241]

The pivotal step in this sequence is an electrophilic substitution on indole. Although the use of l,3-dithian-2-yl carbanions is well documented, it has been shown only recently that 1,3-dithian-2-yl carbenium ions can be used in a Priedel-Crafts type reaction. This was accomplished initially using 2-methoxy-l,3-dithiane [1,3-Dithiane, 2-methoxy-] or 2-metlioxy-l,3-dithiolane [1,3-Dithiolane, 2-methoxy-] and titanium tetrachloride [Titanate(l —), tetrachloro-] as the Lewis acid catalyst.9 2-Substituted lysergic acid derivatives and 3-substituted indoles have been prepared under these conditions, but the method is limited in scope by the difficulties of preparing substituted 2-methoxy-1,3-dithianes. l,3-Dithian-2-yl carbenium ions have also been prepared by protonation of ketene dithioacetals with trifluoroacetic acid,10 but this reaction cannot be used to introduce 1,3-dithiane moieties into indole. [Pg.13]

Considering the formation of saturated five-membered heterocycles with two heteroatoms, it is worth to note the possibility to prepare 1,3-dioxolanes, dithiane, oxathianes 148 [93] and dioxolanones 149 [94] by condensation of the corresponding carbonyl compounds under microwave irradiation in acid medium (Scheme 52). The reaction, which is very useful for the protection of carbonyl compounds or for the preparation of useful synthetic intermediates, has also been carried out under batch conditions over Montmorillonite KIO clay in more than 150 g scale, using a 1 L quartz reactor [95]. [Pg.240]

Cyclic dithioketals and acetals represent another important class of sulfur containing chiral auxiliaries, which are available in chiral form by biooxidation. Biotransformations were performed on a preparative scale using whole-cells (wild type and recombinant) and isolated enzyme. Again, enantiocomplementary oxidation of unsubstituted dithianes (linear and cyclic, R = H) was observed when using and CPMOcomo (Scheme 9.28) [211,212]. Oxygenation of functionalized substrates (R = substituted alkyl) with gave preferably trans... [Pg.256]

Dithianes can be alkylated if a proton is first removed by treatment with butyllithium in Since 1,3-dithianes can be prepared by treatment of an... [Pg.556]

In 1863 Husemann prepared an intermediate, to which he assigned the formula C2H4S, by the action of sodium sulfide on ethylene bromide. From it he obtained the cyclic dimer, dithiane, by distillation. Mans-feld (1886) reinvestigated the intermediate and concluded that it is a polymer. As a reminder of the significance of the term polymer at that time it is to be noted, however, that Mansfeld suggested the cyclic trimeric formula for the intermediate, which is now known to be a linear polymer. Other polymers prepared similarly by Husemann (1863) include methylene sulfide (—CH2—S—)a and methylene tri-thiocarbonate (—CH2—S—CS—S—) . Neither was recognized as a polymer, and neither has since been investigated from this standpoint. [Pg.14]

Herein is described a much simpler dehydrohalogenation alternative that had been earlier applied successfully to the preparation of ketene acetals6-7 and 2-alkylidene-1,3-dithianes.8 This route appears not to have been examined for preparing the title compound because of an early report that 2-lithio-1,3-dithiolanes undergo ready fragmentative elimination to form ethylene and dithlocarbonate unlike... [Pg.90]

Hexafluorophosphate derivatives, such as [M(Me2SO)n][PF6]3 (M = La, Lu, Y), have been synthesized (365), and infrared data show O-bonding of the sulfoxide with ionic hexafluorophosphate groups. Analytical data are incomplete for this series, as decomposition, postulated to be to lanthanide fluorides, occurs. The (CH2)4SO complexes [M( CH2 4SO)t.5][PF6]3 are reported (145), which are 3 1 electrolytes with uncoordinated anions, implying a possible semibridged structure, as previously mentioned. Complexes of other cyclic sulfoxides, including thioxane oxide (146) and trans-1,4-dithiane-1,4-dioxide (147) derivatives of hexafluorophosphate salts have also been prepared. [Pg.179]

The procedure for the preparation of a dithiolane from a hydroxy-methylene derivative of a ketone and ethylene dithiotosylate (ethane-1,2-dithiol di-p-toluenesulfonate) can be varied to produce dithianes when the latter reagent is replaced by trimethylene dithiotosylate.8,4 The dithiotosylates also react with enamine derivatives to produce dithiaspiro compounds.4,5... [Pg.90]


See other pages where 1.3- Dithianes, preparation is mentioned: [Pg.59]    [Pg.321]    [Pg.308]    [Pg.308]    [Pg.319]    [Pg.308]    [Pg.552]    [Pg.59]    [Pg.321]    [Pg.308]    [Pg.308]    [Pg.319]    [Pg.308]    [Pg.552]    [Pg.177]    [Pg.41]    [Pg.296]    [Pg.105]    [Pg.106]    [Pg.702]    [Pg.11]    [Pg.11]    [Pg.279]    [Pg.481]    [Pg.309]    [Pg.309]    [Pg.213]    [Pg.188]    [Pg.509]    [Pg.89]    [Pg.97]    [Pg.187]   
See also in sourсe #XX -- [ Pg.39 , Pg.54 ]




SEARCH



1,3-Dithian

1,3-dithiane

Dithians

© 2024 chempedia.info